182845 (629646), страница 3
Текст из файла (страница 3)
Анализ динамики начнем с проверки ряда на однородность, а также на аномальные наблюдения.
Проверка динамического ряд на однородность можно осуществить по F-критерию Фишера. Для этого необходимо разбить его на 2 совокупности:
n1 = 8 – число наблюдений первой совокупности;
n2 = 4 – число наблюдений второй совокупности.
9,21 |
9,45 |
9,61 |
11,89 |
13,34 |
12,81 |
10,57 |
9,00 |
7,99 |
8,68 |
7,45 |
7,55 |
Критерий Фишера находим по формуле
где σ12 и σ22 – дисперсия по 1-ой и 2-ой выборкам соответственно.
Для расчет дисперсий заполним таблицу:
Таблица 2 – Расчет дисперсий выборок
Год | y | |
1998 | 9,21 | 2,33 |
1999 | 9,45 | 1,65 |
2000 | 9,61 | 1,27 |
2001 | 11,89 | 1,33 |
2002 | 13,34 | 6,79 |
2003 | 12,81 | 4,31 |
2004 | 10,57 | 0,03 |
2005 | 9,00 | 3,01 |
Сумма | 85,88 | 20,71 |
ср. зн. | 10,74 | |
2006 | 7,99 | 0,01 |
2007 | 8,68 | 0,58 |
2008 | 7,45 | 0,22 |
2009 | 7,55 | 0,14 |
Сумма | 31,67 | 0,94 |
ср. зн. | 7,92 |
σ12 = ∑ / 8 = 20,71/ 8 = 2,59
σ22 = ∑ / 4 = 0,92/ 4 = 0,23
Fрасч = 2,59 / 0,23 = 11,26
Данное расчетное значение сравнивают с F-критерием по таблице Фишера для уровня значимости α = 0,05 и числа степеней свободы
V1 = n1 – k – 1 = 8 – 2 – 1 = 5
V2 = n2 – k – 1 = 4 – 2 – 1 = 1
(где k - число выборок).
По таблице Фишера Fкритич = 230,16
Fрасч = 11,26 меньше Fкритич = 230,16, значит данный ряд признается однородным и исследования в дальнейшем проводятся по одной выборке.
Проверим динамический ряд на аномальные наблюдения. Для этого воспользуемся критерием Граббса:
где Тn – критерий Граббса
y – подозреваемое наблюдение.
σ – среднеквадратичное отклонение.
Рассчитаем критерий Граббса для всех наблюдений и представим данные в виде таблицы 3:
Таблица 3 – Расчет критерия Граббса
№ года | у | у-у | (y-y)2 | Тn |
1 | 9,21 | -0,59 | 0,34 | 0,310 |
2 | 9,45 | -0,35 | 0,12 | 0,183 |
3 | 9,61 | -0,19 | 0,03 | 0,098 |
4 | 11,89 | 2,09 | 4,39 | 1,109 |
5 | 13,34 | 3,54 | 12,56 | 1,876 |
6 | 12,81 | 3,01 | 9,09 | 1,596 |
7 | 10,57 | 0,77 | 0,60 | 0,410 |
8 | 9,00 | -0,80 | 0,63 | 0,421 |
9 | 7,99 | -1,81 | 3,26 | 0,956 |
10 | 8,68 | -1,12 | 1,25 | 0,591 |
11 | 7,45 | -2,35 | 5,50 | 1,242 |
12 | 7,55 | -2,25 | 5,04 | 1,189 |
Сумма | 117,55 | 42,81 | ||
Ср. зн. | 9,80 |
Tnтабл = 2,387 для n = 12
Сравниваем расчетные Tn с табличными; если Tnрасч > Tnтабл, то данное явление признается аномальным и исключается из рассматриваемого ряда.
В данном случае все расчетные значения меньше Tnтабл, следовательно, не являются аномальными и не исключаются из рассматриваемого ряда при дальнейшем исследовании.
В зависимости от характера отображаемого явления ряды динамики подразделяются на ряды абсолютных, относительных и средних величин.
Абсолютный прирост (Δy) является наиболее простым показателем анализа динамики. Абсолютный прирост характеризует абсолютный размер увеличения (или уменьшения) уровня явления за определенный промежуток времени.
Если сравниваем последующий уровень с каждым предыдущим, то получаем цепные абсолютные приросты:
Δy = yi – yi-1,
где Δy – абсолютный прирост;
yi – текущий уровень ряда;
yi-1 – предшествующий уровень;
i – номер уровня;
Если сравниваем каждый последующий уровень с одним уровнем, то получаем абсолютные базисные приросты:
Δy = yi – y0,
где y0 – базисный уровень.
Абсолютный прирост выражает абсолютную скорость роста. Используя данные таблицы 1, рассчитаем абсолютный прирост по цепной и базисной системе. Результаты представим в таблице 4:
Таблица 4 – Абсолютный прирост по цепной и базисной системе
№ | год | y | ΔyЦ | ΔyБ |
1 | 1998 | 9,21 | – | – |
2 | 1999 | 9,45 | 0,24 | 0,24 |
3 | 2000 | 9,61 | 0,16 | 0,40 |
4 | 2001 | 11,89 | 2,28 | 2,68 |
5 | 2002 | 13,34 | 1,45 | 4,13 |
6 | 2003 | 12,81 | -0,53 | 3,60 |
7 | 2004 | 10,57 | -2,24 | 1,36 |
8 | 2005 | 9,00 | -1,57 | -0,21 |
9 | 2006 | 7,99 | -1,01 | -1,22 |
10 | 2007 | 8,68 | 0,69 | -0,53 |
11 | 2008 | 7,45 | -1,23 | -1,76 |
12 | 2009 | 7,55 | 0,10 | -1,66 |
Сумма | 117,55 | -1,66 | ||
Ср. зн. | 9,80 |
Для более наглядного представления данных построим график (рисунок 1).
Рисунок 1 – Динамика абсолютного прироста
Анализ цепных показателей: Абсолютный прирост по цепной системе показывает на сколько единиц изменился уровень безработицы в текущем году по сравнению с предыдущим годом. Его значения были положительными в период 1999 – 2002 гг., а также в 2007 и 2009 гг. Это говорит о том, что в данные периоды уровень безработицы увеличивался. В остальные периоды уровень абсолютной прирост по цепной системе меньше нуля, это говорит о том что безработица в эти периоды времени снижалась.
Анализ базисных показателей: абсолютный прирост по базисной системе показывает, на сколько единиц изменился уровень безработицы в текущем году по сравнению с базовым 1998 годом. В 1999 – 2004 годы эта величина была больше нуля, что говорит о том, что в данном периоде безработица выросла и опустилась ниже базового уровня 1998 года лишь в 2005 году. Однако затем ее снижение продолжалось и выше базисного уровня она больше не поднималась, а чем также говорят базисные значении абсолютного прироста в период 2005 – 2009 гг.
Относительная скорость изменения уровня явления, то есть интенсивность роста, выражается коэффициентами роста и прироста, а также темпами роста и прироста.
-
Коэффициент роста – это отношение двух уровней ряда динамики. Он показывает во сколько раз сравниваемый уровень больше базисного. Коэффициент роста может быть исчислен с переменной и постоянной базой сравнения.
Если база меняется, то цепные коэффициенты роста исчисляются по формуле
где Kp – коэффициент роста.