179574 (628276)
Текст из файла
Содержание
Введение
I Формализованные методы анализа
-
Традиционные методы экономической статистики
-
Классические методы
-
Экономико–математические методы экономического анализа
-
Математическо-статистические методы изучения связей
-
Метод теории принятия решения
-
Метод финансовых вычислений
Вывод
Список литературы
Введение
Основу любой науки составляют ее предмет и метод. Предмет финансового анализа, т. е. то, что изучается в рамках данной науки, — финансовые ресурсы и их потоки. Содержание и основная целевая установка финансового анализа — оценка финансового состояния и выявление возможностей повышения эффективности функционирования хозяйствующего субъекта с помощью рациональной финансовой политики. Анализом хозяйственной деятельности называется научно разработанная система методов и приемов, с помощью которых изучается экономика предприятия, выявляются резервы производства, разрабатываются пути их наиболее эффективного использования.
Анализ финансового состояния имеет свои источники, свою цель и свою методику. Источниками анализа финансового состояния являются формы квартальных и годовых отчетов, включая приложения к ним.
В настоящее время для познания происходящих изменений используют способы и приемы, заимствованные из статистических наук, бухгалтерского учета, организации, планирования и управления производством, технико-экономического и финансового анализа.
Существуют различные классификации методов и приемов анализа финансово- хозяйственной деятельности экономического субъекта. В данной работе рассмотрим формализованные методы экономического анализа. Формализованные методы многообразны.
I Формализованные методы принятия решений.
Формализованные методы подразделяются на:
-
традиционные методы экономической статистики (средних и относительных величин, группировок, графический, индексный);
-
классические методы (цепных подстановок, абсолютных и относительных ризниц, балансовый, процентных чисел, дифференциальный, логарифмический, интегральный, дисконтирования);
-
математико-статистические (корреляционного, регрессионного, дисперсионного и факторного анализа, метод главных компонент);
-
эконометрические методы (матричный и гармонический анализ, метод теории производственных функций);
-
методы экономической кибернетики и оптимального программирования (системного анализа, машинного, линейного, нелинейного и динамического программирования);
-
методы исследования операций и теории принятия решений (теории графов, игр и массового обслуживания, метод сетевых графиков).
Рассмотрим некоторые формализованные методы, наиболее часто применяемые при обработке экономической информации.
-
Традиционные методы экономической статистики.
Эти методы разработаны в рамках экономической статистики. Они широко применяются во всех разделах микроэкономического анализа. Их широкая распространенность и простота дают основание условно называть их традиционными.
а. Метод средних величин
В любой совокупности экономических явлений или субъектов наблюдаются различия между отдельными единицами этой совокупности. Одновременно с этими различиями существует и нечто общее, что объединяет совокупность и позволяет отнести все рассматриваемые субъекты и явления к одному классу.
Роль средних величин заключается в обобщении, т.е. замене множества индивидуальных значений признака некоторой средней величиной, характеризующей всю совокупность явлений. Средняя величина обобщает качественно однородные значения признака и, следовательно, является типичной характеристикой признака в данной совокупности.
Средняя величина не фиксирована раз и навсегда. Таким образом, не только средние величины, но и тенденции их изменения можно рассматривать в качестве индикаторов положения предприятия на рынке и успешности его финансово-хозяйственной деятельности в данной отрасли.
Средняя арифметическая величина- это такое среднее значение признака, при вычислении которого общий объем признака в совокупности не меняется. Иными словами, средняя арифметическая - это среднее слагаемое, при расчете которого общий объем признака в совокупности распределяется поровну между всеми единицами.
Помимо средней арифметической используются и другие формы средних величин. В первую очередь это Средняя геометрическая, которая позволяет сохранять неизменные не суммы, а произведение индивидуальных значений величины. Основное применение средняя геометрическая находит при изучении темпов роста. Средняя геометрическая дает наиболее правильный по содержанию результат и в тех случаях, когда требуется найти такое значение экономической величины, которое было бы качественно равноудалено как от ее максимального, так и от минимального значения.
Еще один показатель, характеризующий средние величины, - средняя гармоническая. Он используется в случаях, когда необходимо, чтобы при усреднении оставалась неизменной сумма величин, обратных индивидуальным значениям признака.
В анализе финансово-хозяйственной деятельности широко используется также средняя хронологическая. Для характеристики предприятия применяются интервальные и моментные показатели. Примерами первых являются товарооборот, прибыль, объем поступления за некоторый период; примерами вторых – данные о запасах, основных средствах, численности работающих на определенную дату.
b. Метод группировки данных
Группировка- это расчленение совокупности данных на группы с целью изучения ее структуры или взаимосвязей между компонентами. В процессе группировки единицы совокупности распределяются по группам в соответствии со следующим принципом: различие между единицами, отнесенными к одной группе, должно быть меньше, чем различие между единицами, отнесенными к разным группам.
Важнейший вопрос при проведении такого рода исследования – выбор интервала группировки. Существует два основных подхода к его решению:
-
первый подход предполагает деление совокупности данных на группы с равными интервалами значений.
-
Согласно второму подходу интервалы группировки можно выбрать и неравными. Этот подход обычно применяется при большой вариации и неравномерности распределения признака по всему интервалу его изменения.
Структурные группировки предназначены для изучения структуры и состава совокупности, происходящих в ней сдвигов относительно выбранного варьирующего признака. Структурная группировка оформляется, как правило, в виде таблицы, в подлежащем которой находится группировочный признак, а в сказуемом - показатели, характеризующие структуру совокупности либо в динамике, либо в пространстве. Этот вид группировки характеризует структуру совокупности по какому-то одному признаку.
Аналитические группировки предназначены для изучения взаимосвязей между двумя и более показателями, характеризующими исследуемую совокупность. Один из показателей при этом рассматривается как результат, а остальные – как факторные. По аналитической группировки можно рассчитать силу связи между факторами.
В качестве информационной основы группировок служат или генеральная совокупность однотипных показателей, или выборочная совокупность. Во втором случае для определения необходимого объема изучаемой информации используется формула случайной безвозвратной выборки:
где n . необходимый объем выборки,
t - коэффициент доверия,
σs2 - общая выборочная дисперсия,
N - объем генеральной совокупности,
x2 - предельная ошибка выборочной средней.
Процесс группировки данных включает в себя несколько этапов: определение количества групп, определение границ интервалов.
c. Элементарные методы обработки расчетных данных.
При изучении совокупности значений изучаемых величин, помимо средних, используют и другие характеристики. При анализе больших массивов данных обычно интересуются двумя аспектами:
-
Величинами, которые характеризуют ряд значений как целого, т е характеристиками общности;
-
Величинами, которые описывают различия между членами совокупности, т е характеристиками разброса (вариации) значений.
В качестве показателей общности используются следующие величины: середина интервала, мода и медиана.
Середина интервала возможных значений xi рассчитывается по формуле:
.
Мода – такое значение изучаемого признака, которое среди всех его значений встречается наиболее часто. Если чаще других встречаются два или более различных значений, такую совокупность данных называют бимодальной или мультимодальной. Если же ни одно из значений не встречается чаще других, такая совокупность является безмодальной.
Медиана - такое значение изучаемой величины, которое делит изучаемую совокупность на две разные части, в которых количество членов со значениями меньше медианы равно количеству членов, которые больше медианы. В отличие от средней, величина медианы не зависит от крайних значений показателя.
В качестве показателей размаха и интенсивности вариации показателей чаще всего используются следующие величины: размах вариации, среднее линейное отклонение, среднеквадратическое отклонение, дисперсия и коэффициент вариации.
Размах вариации рассчитывается по формуле:
R=xmax-xmin
Среднее линейное отклонение (средний модуль отклонения) от среднего арифметического исчисляется по формуле:
наибольшее распространение при изучении разброса значений числовых данных получили величины среднеквадратического отклонения (СКО) σ и дисперсии σ2:
Чем больше величина σ и σ2, тем сильнее разброс значений вокруг среднего.
Величина СКО, как следует из ее определения, зависит от абсолютных значений самого изучаемого признака. Чем больше величины xi, тем больше будет σ. Поэтому для сравнения рядов данных, отличающихся по абсолютным величинам, вводят коэффициент вариации:
Этот коэффициент является показателем «количественной» неоднородности совокупности данных. Критическое значение его считается равным 33 %. Если Var› 33 %, то совокупность нельзя признать однородной.
d. Индексный метод
Один из наиболее востребованных методов решения – индексный.
Индекс- это статистический показатель, представляющий собой отношение двух состояний какого-либо признака. С помощью индексов проводят сравнение с планом, в динамике, в пространстве. Индекс называется простым (частным, индивидуальным), если исследуемый признак берется без учета связи с другими признаками изучаемых явлений.
Индекс называется аналитическим (общий, агрегатный), если исследуемый признак берется не изолированно, а в связи с другими признаками. Аналитический индекс всегда состоит из двух компонент: индексируемый признак p(тот, динамика которого исследуется) и весовой признак g. С помощью признаков- весов измеряется динамика сложного экономического явления, отдельные элементы которого несоизмеримы. Простые и аналитические индексы дополняют друг друга.
С помощью индексов в анализе финансово-хозяйственной деятельности решаются следующие основные задачи:
-
Оценка изменения уровня явления (или относительного изменения показателя);
-
Выявление роли отдельных факторов в изменении результативного признака;
-
Оценка влияния изменения структуры совокупности на динамику.
При индексном методе индекс (I) любого показателя определяется делением его фактического значения у/ на базисное (плановое - у или фактическое предыдущего периода - У0).
Различают индивидуальные индексы, которые отражают соотношение непосредственно измеряемых величин и агрегатные (групповые, тотальные) - характеризуют соотношение сложных величин, явлений. Если параметр «у» исчисляется как произведение нескольких элементов, например, у = в*с, то агрегатный индекс
а индивидуальные
Относительное (Iу) и абсолютное (.у = у/ - у) отклонение каждого фактора определяется так:
Iуа = (Σа/*в)/(Σа*в), .уа = Σа/*в - Σа*в и Iув = (Σа/*в/)/(Σа/*в), .ув = Σа/*в/ - Σа/*в.
Применительно к изменению физического объема продаж, если товары учитываются не только по ценам (Ц), но и по количеству (N), индекс рассчитывается так:
.
Если количественный учет не ведется, то индекс физического оборота определяется отношением индекса оборота в действующих ценах и индекса цен, исчисляемый по схеме среднего гармонического индекса
-
Классические методы экономического анализа
a. Балансовый метод
Этот метод применяется при изучении соотношения двух групп взаимосвязанных показателей, итоги которых должны быть равны между собой. Своим названием он обязан бухгалтерскому балансу, который был одним из первых исторических приемов увязки большого числа экономических показателей двумя равными итоговыми суммами. Особенно широко распространено использование метода при анализе правильности размещения и использования хозяйственных средств и источников их формирования. Прием балансовой увязки используется также при изучении функциональных аддитивных связей, в частности, при анализе товарного баланса, а так же для проверки полноты и правильности произведенных расчетов в факторном анализе: общее изменение результативного показателя должно равняться сумме изменений за счет отдельных факторов.
b. Факторный анализ.
Одним из основных понятий в экономическом анализе является понятие фактора. На результат хозяйственной деятельности оказывает влияние множество факторов, находящихся во взаимной связи, зависимости и обусловленности. Любой хозяйственный процесс складывается под влиянием разнообразных факторов. Все факторы, воздействующие на результаты хозяйственной деятельности, могут классифицироваться по различным признакам. Прежде всего следует выделить следующие группы факторов:
-
природные (среднемесячные температуры, продолжительность светового дня и т.д.);
-
социально-экономические (уровень образования кадров, жилищные условия и т.д.);
-
производственно-экономические, характеризующие использование производственных ресурсов предприятия.
c. Метод цепных подстановок и арифметических разниц.
Метод цепных подстановок еще называют приемом последовательного (постепенного) изолирования факторов. Этот метод предназначен для измерения влияния факторных признаков на изменение результативного показателя при изучении функциональных зависимостей. Прием цепных подстановок может быть использован при анализе отклонений фактических знаний экономических показателей от плановых, а так же при изучении динамики показателей.
Метод цепных подстановок (ЦП) заключается в измерении влияния одного из нескольких факторов на обобщающий показатель при исключении действия остальных. Достигается это путем последовательной замены базисных значений факторов фактическими. Если, например, по базе (плану) у = а*в*с,
а по факту у/ = а/*в/*с/,
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















