177570 (627457), страница 3
Текст из файла (страница 3)
При количестве работающих до 100чел - 11м2/чел;
свыше 100 до 200 - 8м2/чел;
свыше 200 до 300 - 7 м2/чел;
свыше 300 до 400 - 6 м2/чел;
свыше 400 до 700 -5м2/чел;
свыше 700 - 4м2/чел.
Fвс = 5*640 = 3200 (м2)
6. Организация вспомогательного и обслуживающего производства
Воздухоснабжение. При укрупненных расчетах, общий расход сжатого воздуха по предприятию определяется по удельному расходу на единицу продукции.
Qв= qв * Nпр
где, qВ - удельный расход сжатого воздуха, м3 на единицу продукции (в среднем можно принять равным 4.5-4.7).
Qв= 4,5*2705 = 12172 (м3)
Получение сжатого воздуха требует устройства на предприятиях компрессорных станций.
Расчетная производительность компрессорной станции (Qст) определяется по формуле
Qcm= kmax* Qв
где, kmax - коэффициент максимума, учитывающий кратковременные превышения расхода воздуха по сравнению с расчетным (kmax= 1.2-1.4).
Qcm= 1,3*12172 = 15824 (м3)
Сжатый воздух от компрессора поступает в воздухосборник. Приближенно емкость воздухосборника (Vв) в кубических метрах определяется по формуле
Vв = 0,5* Qcm
Vв = 0,5*15824= 7912 (м3)
Электроснабжение.
Расход силовой электроэнергии.
Qсил= Wуст* η3 * Фо * kсп
Wуст = Нуст * Nnp
где: Wуст - установленная мощность токоприемников, кВт /прил.7/
З - коэффициент загрузки оборудования (для укрупненных расчетов можно принять равным 0.6-0.75);
Фо - действительный годовой фонд времени работы оборудования, час;
kсп - коэффициент спроса, учитывающий неодновременность работы потребителей (в среднем можно принять равным 0.3 - 0.5).
Wуст = Нуст. Nпр,
где, Нуст - норматив установленной мощности токоприемников, кВт на единицу продукции (приложение).
Qсил= 3711*0,7*3630*0,4 = 3771860 (кВТ)
Wуст = 1,23*2709= 3332 кВт
Нуст = 1,35 + ( (1,35 - 1,17) / (4000 - 2000)) * (4000 - 2709) =
= 1,35 + (0,00009 * 1291) = 1,23кВт
Расход осветительной электроэнергии.
Qосв= R * Qг * F
где R - норма расхода электроэнергии, Вт/ (м2ч) (при укрупненных расчетах принимают равной 15-20);
Qг - продолжительность работы электрического освещения в течении года (принимается в среднем 2100 ч для местностей, расположенных на широте 40-60о);
F - площадь помещений, м2 (производственно-складские и вспомогательные).
Qосв= 20*2100* (20667+3200) = 1002414000 Вт
Водоснабжение.
Расход воды для производственных (технологических) и хозяйственно-бытовых нужд определяется укрупненным методом по удельным показателям расхода.
Расход воды для производственных нужд определяется по формуле:
Qп = qn * Nпр
где qп - удельный расход воды, м3 на единицу продукции (приложение 7)
Qп = 10,47*2709 =28363м3
qn = 13,7 - ( (13,7 - 8,7) / (4000 - 2000) * (4000 - 2709) =
=13,7 - (0,0025*1291) = 10,47 м3
Расход воды для хозяйственно-бытовых нужд определяется по формуле:
Qб= qб * Р * С
где qб - расход воды за смену на одного работающего, л (принимается равным 25 л);
С - количество смен.
При расчете учитывать количество смен и количество рабочих дней в году. Расход воды на непредвиденные цели принимается равным 10% от общего расхода воды.
Qб= 0,025*640*2*1,1 = 35,2м3
Теплоснабжение.
Расход тепла определяется по нормативу, устанавливаемому на квадратный метр площади отапливаемых помещений.
Qт= qт * F
где qт - нормативный расход тепла (на данный период времени принять равным 0.0251 Гкал/м2).
Qт= 0,0251*23867 = 599,1 Гкал
7. Графическая часть
Исходные данные:
| - проверка и правка | 0,80 |
| - фрезерование плоскостей разъема | 2,10 |
| - шлифование отверстия нижней головки | 2,30 |
| - запрессовывание втулки в отверстие верхней головки и растачивание | 1,70 |
Продолжительность производственного цикла простого процесса.
Процесс изготовления партии деталей, проходящей через многие операции, состоит из совокупности операционных циклов, каждый из которых представляет собой выполнение одной операции над всеми предметами производства данной партии. Совокупность операционных циклов, а также способ сочетания во времени смежных операционных циклов, а также способ сочетания во времени смежных операционных циклов и их частей образуют временную структуру многооперационного технологического цикла. Продолжительность многооперационного технологического цикла существенно зависит от способа сочетания во времени операционных циклов и их частей, а также от определяемого вида движения партии деталей по операциям. Существуют три вида движения партии деталей по операциям технологического процесса: последовательный, параллельно-последовательный и параллельный. Технологический цикл при последовательном движении деталей по операциям.
Сущность последовательного вида движения заключается в том, что каждая последующая операция начинается только после окончания изготовления всей партии деталей на предыдущей операции.
Последовательный вид движения
Партия деталей равна n = 3; число операций m = 4;
Тц (посл) = n*t1+ n*t2+…+ n*tm = n
(26)
где n - число деталей в обрабатываемой партии, шт.
ti - штучное время на i - ой операции, мин.
m - число операций в технологическом процессе.
Тi дв = 97737маш/час / 1400дв. = 69,8
Операция 1 - проверка и правка t1 = (Тi дв * 0,8) / 100 *60 = (69,8*0,8) / 100*60 = 34мин
Операция 2 - фрезерование t2 = (Тi дв * 2,1) / 100 *60 = (69,8*2,1) / 100*60 = 88мин
Операция 3 - шлифование t3 = (Тi дв * 2,3) / 100 *60 = (69,8*2,3) / 100*60 = 96мин
Операция 4 - запрессовывание t4 = (Тi дв * 1,7) / 100 *60 = (69,8*1,7) / 100*60 = 71мин
Продолжительность операционного технологического цикла определяется по следующей формуле:
Тц (посл) = n*t1+ n*t2+…+ n*tm = n
(26)
где n - число деталей в обрабатываемой партии, шт.
ti - штучное время на i - ой операции, мин.
m - число операций в технологическом процессе.
Тц (посл) = 3* (34+88+96+71) = 867мин
Сущность последовательного вида движения заключается в том, что каждая последующая операция начинается только после окончания изготовления всей партии деталей на предыдущей операции. При этом передача с одной операции на другую осуществляется целыми партиями. Продолжительность операционного технологического цикла обработки партии деталей определяется по формуле на основе графика
График 1. График технологического цикла при последовательном движении деталей по
Номер операции
1 2 3
1
1 2 3
2
Т1 102
Т2 = 176
1 2 3
3
T3 = 142
1 2
3
4
Tц = 481мин T4 = 61
t
100 200 300 400 500
Преимуществом последовательного движения партии деталей является отсутствие перерывов в работе рабочих и оборудования на всех операциях. Однако этот вид движения имеет и существенные недостатки. Во-первых, детали пролеживают в течении длительного времени из-за перерывов партионности, свойственных данному виду движения, в результате чего создается большой объем незавершенного производства. Во-вторых, продолжительность технологического (производственного) цикла значительно увеличивается из-за отсутствия параллельности в обработке деталей. В связи с этим последовательное движение применяется преимущественно в единичном и мелкосерийном производствах, так как на таких предприятиях весьма широкая номенклатура изделий, а обработка деталей ведется небольшими партиями, что приводит к сокращению перерывов партионности и влияния их на продолжительность производственного цикла.
Последовательно-параллельный вид движения
Сущность последовательно-параллельного движения заключается в том, что на каждом рабочем месте работа ведется без перерывов, как при последовательном движении, но вместе с тем имеет место параллельная обработка одной и той же партии деталей на смежных операциях. Передача деталей с предыдущей операции на последующую производится не целыми партиями, а поштучно или транспортными партиями. Величина транспортной партии р = 1. При построении графика данного вида движений деталей по операциям технологического процесса учитываем следующие виды сочетаний периодов выполнения смежных операций:
График 2. График технологического цикла при последовательно параллельном движении деталей по операциям.
Номер операции
1 2 3
1
1 2 3
2
Т1 102
Т2 = 176
1 2 3
3
T3 = 142
1 2 3
4
Tц = 481мин T4 = 61
t
100 200 300 400 500
Если периоды выполнения смежных операций (предыдущей и последующей) одинаковые, то между ними организуется параллельная обработка деталей, которые передаются с предыдущей операции на последующую поштучно или небольшими транспортными партиями сразу же после их обработки.
Если продолжительность последующей операции меньше, чем предыдущей, то отсутствие простоев оборудования на последующей операции может быть обеспечено только после накопления перед ней известного запаса деталей, позволяющего эту операцию выполнять непрерывно. Для того чтобы определить момент начала последующей операции, необходимо от точки, соответствующей окончанию предыдущей операции над всей партией, отложим вправо отрезок, равный в принятом масштабе времени выполнения последующей операции над одной транспортной партией, а влево - отрезок, равный продолжительности последующей операции над всеми предшествующими транспортными партиями.
Если продолжительность последующей операции больше, чем предыдущей, то в этом случае транспортную партию можно передавать с предыдущей операции на последующую сразу же по окончании ее обработки.
На графике 2 видно, что продолжительность цикла изготовления партии деталей n = 3 на m = 3 операциях технологического процесса при последовательно-параллельном движении меньше, чем при последовательном движении из-за наличия параллельности протекания каждой пары смежных операций на суммарное время совмещений t. Таких совмещений столько, сколько операций в технологическом процессе за минусом единицы.
Время совмещения (параллельности) выполнения каждой пары смежных операций:
τ= (n-p) *tкр
τ1= (3 - 1) * 34= 68
τ1= (3 - 1) * 88= 176
τ1= (3 - 1) * 71= 142
где индекс при tкр соответствует операциям с наименьшим временем их выполнения. Например, между первой и второй операциями tкр=t1, между второй и третьей операциями tкр=t2, между третьей и четвертой операциями tкр=t4.
Тц (пп) = n*
- (n -p) *
Тц (пп) = 3* (34+88+96+71) - (68+176+142) = 867 - 386 = 481мин
Достоинством этого вида движения является отсутствие перерывов в работе рабочих и оборудования и значительное сокращение продолжительности технологического (производственного) цикла по сравнению с последовательным видом движения. Данный вид движения позволяет вести работу большими партиями и при большой трудоемкости изготовления деталей, благодаря чему он широко используется в серийном и крупносерийном производстве.
Параллельный вид движений.















