175440 (626320), страница 4

Файл №626320 175440 (Анализ динамики импорта и экспорта США) 4 страница175440 (626320) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Рис. 7. Динамический ряд импорта, сглаженный 3-х членными скользящими средними.

Рис. 8. Динамический ряд импорта, сглаженный 7-ми членными скользящими средними

Рис. 9. Динамический ряд экспорта, сглаженный 3-х членными скользящими средними.

Рис. 10. Динамический ряд экспорта, сглаженный 7-ми членными скользящими средними.

Более точно динамику изменения объема экспорта и импорта описывают тренды, выраженные 3-х членными скользящими средними. Но простые скользящие средние – относительно грубый статистический прием выявления тенденции. В ряде случаев сглаживание с помощью простой скользящей средней оказывается настолько сильным, что тенденция развития проявляется лишь в самом общем виде, а отдельные важные для экономического анализа детали теряются. Часто после сглаживания мелкие волны или вообще исчезают, или меняют свой знак, т. е. вместо выпуклого участка на кривой получают вогнутый, и наоборот.

2.2 Аналитическое выравнивание динамического ряда

Кривые роста, описывающие закономерности развития явлений во времени, получают путём аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций (то есть их подгонка к данным) в большинстве случаев оказывается удобным средством описания эмпирических данных, характеризующих развитие во времени исследуемого явления. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

определения численных значений (оценивание) параметров кривой;

апостериорного контроля качества выбора тренда.

Найденная функция позволяет получить выровненные, или, как их иногда называют, теоретические значения уровней динамического ряда, то есть те уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без неё, применяется и для экстраполяции.

Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом весьма велико влияние субъективного фактора, даже при отображении выровненных уровней. Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления.

Итак, рассмотрим следующие типы уравнений тренда:

линейная форма:

;

полином 2-ой степени:

;

полином 3-ей степени:

;

степенная форма:

;

экспоненциальная форма:

, или Yt = aebt

где - уровень ряда, полученный в результате выравнивания по прямой,

- начальный уровень тренда;

, , - константы тренда.

Это только часть тех кривых, которые можно было использовать для выравнивания ряда.

Задача: подобрать для каждого из периодов динамических рядов наилучший тренд, по которому будет спрогнозирован дальнейший результат.

Полученные уравнения трендов сведены в таблицы 2.49 – 2.54 по периодам и динамическим рядам с указанием значений остаточной дисперсии для каждой модели и коэффициента детерминации. Также был произведен выбор наилучших трендов, основанный на минимуме остаточной дисперсии и максимуме коэффициента детерминации.

Рассчитанные показатели представлены ниже.

Для их расчета будут использоваться следующие таблицы по периодам:

1 период:

Рис. 10. Исходные данные

2 период:

Рис. 11. Исходные данные

Где под Т подразумевается время.

Также нам потребуются следующие обозначения, которые используются в ППП Statistica:

в таблице «Результаты расчета параметров линейной модели тренда»

Estimate – числовые значения параметров уравнения;

Standard еrror – стандартная ошибка параметра;

t-value – расчетное значение t-критерия;

df – число степеней свободы (n-2);

p-level – расчетный уровень значимости;

Lo. Conf. Limit и Up. Conf. Limit – соответственно нижняя и верхняя граница доверительных интервалов для параметров уравнения с установленной вероятностью (указана как Level of Confidence в верхнем поле таблицы).

В таблице «Результаты дисперсионного анализа линейной модели тренда»:

В верхней заголовочной строке таблицы выдаются пять оценок:

Sum of Squares – сумма квадратов отклонений;

df – число степеней свободы;

Mean Squares – средний квадрат;

F-value – критерий Фишера;

p-value – расчетный уровень значимости F-критерия.

В левом столбце указывается источник вариации:

Regression – квадраты теоретических (полученных по тренда) значений признака;

Residual – отклонения фактических значений от теоретических (полученных по уравнению тренда);

Total – отклонения фактических значений от их средней величины.

На пересечении столбцов и строк получаем однозначно определенные показатели:

Regression / Sum of Squares – сумма квадратов прогнозных значений;

Residual / Sum of Squares – сумма квадратов отклонений теоретических и фактических значений (для расчета остаточной, необъясненной дисперсии);

Total / Sum of Squares – сумма первой и второй строчки (сумма квадратов фактических значений);

Corrected Total / Sum of Squares – сумма квадратов отклонений фактических значений от средней величины (для расчета общей дисперсии);

Regression vs. Corrected Total / Sum of Squares – повторение первой строчки;

Regression / Mean Squares – сумма квадратов прогнозных значений, деленная на число степеней свободы;

Residual / Mean Squares – остаточная, необъясненная дисперсия;

Regression vs. Corrected Total / Mean Squares – повторение первой строчки;

Regression / F-value – расчетное значение F-критерия.

В таблице «Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда»:

Observed – наблюдаемые значения (то есть уровни исходного динамического ряда);

Predicted – прогнозные значения (полученные по уравнению тренда для данных моментов времени);

Residuals – остатки (разница между фактическими и прогнозными значениями).

1 период:

1.1. Линейная функция

1.1.1. Импорт

Model is: v1=a0+a1*v3

Dependent variable: Импорт Independent variables: 1

Loss function: least squares

Final value: 2860,58754087

Proportion of variance accounted for:,96459517 R =,98213806

Рис. 12. Результаты расчета параметров линейной модели тренда

σ²ост = 357,6

Рис. 13. Результаты дисперсионного анализа линейной модели тренда

Рис. 14. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 15. Исходный динамический ряд и линейный тренд

1.1.2. Экспорт

Model is: v2=a0+a1*v3

Dependent variable: Экспорт Independent variables: 1

Loss function: least squares

Final value: 12239,2987404

Proportion of variance accounted for:,70518264 R =,83975153

Рис. 16. Результаты расчета параметров линейной модели тренда

σ²ост = 1529,9

Рис. 17. Результаты дисперсионного анализа линейной модели тренда

Рис. 18. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 19. Исходный динамический ряд и линейный тренд

2. Полином 2-ой степени

1.2.1. Импорт

Model is: v1=a0+a1*v3+a2*v4

Dependent variable: Импорт Independent variables: 2

Loss function: least squares

Final value: 2361,07651935

Proportion of variance accounted for:,9707775 R =,98528042

Рис. 20. Результаты расчета параметров линейной модели тренда

σ²ост = 337,3

Рис. 21. Результаты дисперсионного анализа линейной модели тренда

Рис. 22. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 23. Исходный динамический ряд и линейный тренд

1.2.2. Экспорт

Model is: v2=a0+a1*v3+a2*v4

Dependent variable: Экспорт Independent variables: 2

Loss function: least squares

Final value: 1182,47466764

Proportion of variance accounted for:,97151683 R =,98565553

Рис. 24. Результаты расчета параметров линейной модели тренда

Характеристики

Тип файла
Документ
Размер
57,03 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6955
Авторов
на СтудИзбе
264
Средний доход
с одного платного файла
Обучение Подробнее