166632 (625067), страница 2
Текст из файла (страница 2)
Разновидность диафрагменного способа - более совершенный процесс электролиза в электролизерах с ионообменной мембраной. В таких электролизерах анодное и катодное пространства разделены полимерной мембраной, которая предотвращает попадание хлорида натрия из анодного пространства в которое подается рассол, в катодное и препятствует переносу ионов ОН- к аноду электролизера. Хлор выделяется на аноде и выводится из анодного пространства вместе с обедненным рассолом. Ионы натрия и частично молекулы воды проходят через мембрану к катоду, куда подается вода в количестве, необходимом для образования щелока заданной концентрации. Электролизеры мембранного типа различаются числом ячеек (от 40 до 80) и имеют мощность до 80 тысяч тонн в год по гидроксиду натрия. В отличие от электролизеров с асбестовой диафрагмой нагрузка на ячейку (сила тока) значительно ниже и не превышает 7,5 кА. Поэтому электролизеры с ионообменной мембраной значительно экономичнее диафрагменных.
1.3. Электролиз раствора хлорида натрия с ртутным катодом
На ртутном катоде разряд ионов гидроксония Н3О может происходить только при малых, менее 50 А/м, плотностях тока. В условиях промышленного электролиза водных растворов хлорида натрия в электролизерах с ртутным катодом плотность тока составляет 5-10 кА/м2. При такой плотности тока, вследствие перенапряжения потенциал разряда ионов Н3О составляет +2,0 В. В то же время, за счет растворения выделившегося металлического натрия в ртути, образуется амальгама Natign, представляющая качественно новый электрод, потенциал разряда натрия на котором составляет +1,2 В. Поэтому, на катоде будут разряжаться ионы натрия.
Первичные процессы разряда на аноде при электролизе с ртутным катодом те же, что и при электролизе с железным катодом. В табл. 3. приведены потенциалы разряда ионов и уравнения первичных процессов при электролизе с ртутным катодом.
Таблица 3
Электролиз с ртутным катодом
Электрод | Потенциал разряда, В | Первичная реакция | |||
Ер | Епер | Е | |||
Катод | +2,71 0,84 | - 0,26 | +2,71 +1,10 | Na+ + ē Na H3O+ | |
Анод | -0,83 -1,33 | -1,07 -0,27 | -1,90 -1,60 | OH- Cl- - ē = 0,5 Cl2 |
Теоретическое напряжение разложения равно:
VT = Ek + Ea = +1,2-(-1,6) = 2,8 В
Практически, при проведении электролиза с ртутным катодом на токоподводах электролизера поддерживается напряжение, равное 4,5 В.
Вторичные процессы при электролизе водного раствора хлорида натрия с ртутным катодом сводятся к реакци:
- разложение амальгамы натрия водой вне электролизера в разлагателе:
NaHgn + H2O- NaOH + 0,5H2 + nHgn
- растворение натрия в ртути и образование жидкой амальгамы натрия в катодном пространстве.
Так как в электролизе с ртутным катодом не происходит разряда ионов НзО+, то концентрация ионов гидроксила в катодном пространстве электролизера не увеличивается и вторичные процессы в анодном пространстве отсутствуют.
Суммируя уравнения реакций первичных процессов и вторичных процессов образования и разложения амальгамы натрия, получаем уравнение процесса электролиза, идентичное ранее полученному:
NaCI Na + 0,5Cl
Na + nHg NaHgn
NaHgn + H2O NaOH + 0,5H2 + nHg
N
aCl + H2O NaOH + 0,5H2 + 0,5Cl2
в разлагателе у анода
Электролизер, используемый в процессе электролиза с ртутным катодом, состоит из собственно электролизера (ванны) и разлагателя. Конструктивно разлагатель может быть объединен в одно целое с электролизером или вынесен отдельно. По дну ванны, имеющему небольшой уклон, непрерывно движется тонкий (толщиной 5 мм) слой ртути, являющийся катодом. Образующаяся в процессе электролиза жидкая амальгама натрия концентрацией не более 310-4 масс. дол., самотеком поступает в разлагатель, куда подается вода. Из разлагателя, выделяющийся водород поступает в общий коллектор, а раствор гидроксида натрия концентрацией 0,5 масс. дол. направляется в сборник щелока. На рис. 3. приведена принципиальная схема электролиза с ртутным катодом.
В табл. 4. даны характеристики наиболее распространенных электролизеров с ртутным катодом.
Таблица 4
Характеристики электролизеров с ртутным катодом
Показатель | Тип электролизера | ||
Р-101 | Р-300 | ||
Сипа тока (нагрузка), кА | 150 | 300 | |
Напряжение, В | 4,6 | 4,7 | |
Выход по току, дол. ед. | 0,95 | 0,95 | |
Расход энергии на 1 т Cl2, кВтч | 3620 | 3680 | |
Производительность по Сl2, т /сутки | 4,5 | 9,04 |
Сопоставление диафрагменного и ртутного методов производства едкого натра и хлора позволяет заключить, что:
- электролизеры с ртутным катодом потребляют больше энергии вследствие высокого напряжения разложения, эксплуатация их сложнее, капитальные затраты выше, а условия труда из-за токсичности ртути тяжелее. Однако в них можно получать более концентрированные и свободные от хлорида натрия щелока, что об легчает последующее выделение гидроксида натрия,
- электролизеры с железным катодом позволяют использовать в качестве сырья подземные рассолы, тогда как в ваннах с ртутным катодом применяется только чистая соль. Их недостаток - высокое (до 0,04 масс. дол. против 0,0005 масс. дол. в ртутных ваннах) содержание в щелоке хлорида натрия, затрудняющее его переработку.
Себестоимость гидроксида натрия полученного электролизом с ртутным катодом на 10-15% выше, чем себестоимость полученного диафрагменным методом.
Дальнейшее совершенствование процесса производства гидроксида натрия и хлора электрохимическим методом заключается в:
- разработке процесса, сочетающего диафрагменный и ртутный методы, в котором твердый хлорид натрия, полученный выпариванием обратного щелока из диафрагменного электролизера, поступает на донасыщение анолита из ванн с ртутным катодом,
- внедрение электролизеров диафрагменного типа с ионообменной мембраной.
1.4. Переработка продуктов электролиза
Электролиз водного раствора хлорида натрия используется для промышленного производства гидроксида натрия. В качестве побочного продукта при этом получается водород.
Переработка щелока в гидроксид натрия. Электролитический щелок, получаемый электролизом с ртутным катодом, не содержит хлорида натрия. Для получения из него гидроксида натрия щелок упаривают до заданной концентрации и затем обезвоживают. Щелок, получаемый электролизом с железным катодом, содержит 170—200 г/л хлорида натрия. Процесс переработки этого щелока заключается в выделении из него хлорида натрия, возвращаемого в технологический процесс, упаривании раствора и обезвоживании полученного плава едкого натра для получения твердого продукта. Выделение хлорида натрия из щелока основано на его изотермической кристаллизации. Растворимость хлорида натрия в водных растворах гидроксида натрия понижается с увеличением концентрации последнего.
Поэтому при упаривании щелока из него выпадает растворенный в нем хлорид натрия. Упаривание до концентрации выше 50% масс. практически нецелесообразно, так как за этим пределом растворимость хлорида натрия почти не изменяется. Выделившийся хлорид натрия после охлаждения раствора отделяют на фильтре, промывают и вновь используют для электролиза (обратная соль).
В некоторых отраслях промышленности используют твердый едкий натр. Для его получения очищенный от хлорида натрия и упаренный щелок обезвоживают (плавят) в котлах, обогреваемых топочными газами, или в вакуум-выпарных установках непрерывного действия, обогреваемых высококипящим органическим теплоносителем - даутермом (смесь дифенила и диоксида).
Технический гидроксид натрия (едкий натр) выпускают в твердом виде (плавленный и в виде чешуек) с содержанием NaOH не менее 95% (ГОСТ 2263-71) и в виде водного раствора с содержанием NaOH не менее 610 г/л (ГОСТ 11078-71).
2. Технологическая часть
2.1. Характеристика исходного сырья
Исходным компонентом при производстве едкого натрия является хлорид натрия. При производстве применяют также карбонат натрия и соляная кислота.
Натрия хлорид (поваренная соль, каменная соль) NaCl, бесцветные мало гигроскопичные кристаллы с кубической гранецентрирированной решеткой (а = 0,56402 нм, пространственная группа Fm3m, z = 4); ТПЛ = 801°С, Ткип. = 1413°С; плотность - 2,161 г/см3 (20°С); Ср° - 50,50 Дж/(мольК); АН°ПЛ -28,20 кДж/моль, Н°обр - 411,26 кДж/моль; S0298 = 72,15 Дж/(мольК).
В равновесном паре содержится 83 молекулярных % NaCl и 17% Na2Cl2. Растворимость в воде (г в 100 г): 35,68 (10°С), 35,87 (20°С), 36,80 (50°С), 38,12 (80°С). Растворимость в жидком NH3, спиртах, этиленгликоле, муравьиной кислоте, не растворим в соляной кислоте. В интервале от -21,2 до 0,15°С кристаллизуется дигидрат NaCl-2H2O; плотность 1,6 г/см3; давление водяного пара над ним изменяется от 91,77 (-21,2°С) до 462,84 Па (0,15°С). Насыщеннный водный раствор (28,41% по массе NaCl) кипит при 108,7°С.
В природе хлорид натрия встречается в виде минерала галита (каменная соль), в воде океанов и морей, рапе соляных озер и подземных рассолах.
Хлорид натрия производят из природного сырья. Добыча каменной соли осуществляется закрытым способом (реже - открытым) с применением подземного выщелачивания. Добыча самосадочной соли из соляных озер производится механическим способом, озерную соль промывают рапой, центрифугируют и сушат. Садочную (бассейновую) соль получают естественным испарением морских и озерных рассолов в системе специально устроенных бассейнов, в местностях с холодным климатом используют вымораживание. Выварочную соль (наиболее чистая) производят упариванием естественных или искусственно полученных и очищенных рассолов в вакуум-выпарных аппаратах. Для технических целей применяют каменную и самосадочную соль, для пищевых - выварочную, самосадочную и садочную. Производят специальные сорта хлористого натрия: йодированную, брикетированную и исслеживающуюся, чистую с содержанием хлористого натрия выше 99,9% по массе. Хлорид натрия - пищевой продукт, консервирующее средство, сырье для получения Na2CO3, Cl2, NaOH, хлорной извести и др.; его применяют более чем в 1500 производств различных веществ и материалов. Мировое производство около 175 млн. т/год (1980). ПДК в воздухе 1,0 мг/м3.
Натрия карбонат (кальцинированная сода) Na2CO3, бесцветные кристаллы; до 350 °С существует -модификация (см. табл. 5), в интервале 350-479 °С - с моноклинной кристаллической решеткой, а выше 479°С -гексагональная модификация (а = 0,5215 нм, с = 0,6584 нм, z = 2, пространственная группа Р63тс); Н0 переходов и соответственно 0,80 и 2,1 кДж/моль; Тпл. = 858°С; Н°ПЛ = 28 кДж/моль.
Гигроскопичен. Растворимость в воде = 17,69% по массе (20 °С); Н0 растворения для бесконечно разбавленного раствора - 26,65 кДж/моль; растворы имеют сильнощелочную реакцию. Ниже 32°С из водных растворов кристаллизуется декагидрат, в интервале 32-35°С - гексагидрат, выше 35°С - моногидрат, а выше 112,5 °С - безводная соль. В природе карбонат натрия встречается в виде грунтовых рассолов, рапы в озерах и минералов-натрона Na2CO3·10H2O, термонатрита Na2CO3·H2O, троны Na2CO3·NaHCO3·2H2O. В России мощность месторождений природного карбонат натрия около 4 млн. т. Крупные запасы карбонат натрия сосредоточены в США, Канаде, Кении, Мексике, ЮАР и др.