166453 (625020), страница 3
Текст из файла (страница 3)
Для ее расчетов нужны поэтому дополнительные данные. Задачу определения скорости коррозии можно проще решить на основе кинетической теории коррозии. В этом случае катодную и анодную поляризационные кривые снимают непосредственно на образце, коррозию которого изучают. Общую скорость коррозии выражают силой тока, отнесенной к единице всей поверхности металла, без разделения ее на катодные и анодные участки. При стационарном потенциале скорость коррозии, выражаемая силой тока анодного растворения металла, отнесенная ко всей его поверхности (включая и катодные зоны) должна быть равна скорости катодного процесса, например скорости выделения водорода. Последняя в случае снятия катодной поляризационной кривой будет равна силе тока, деленной на всю поверхность образца, включая анодные участки. Таким образом, при стационарном потенциале плотности тока для анодного и катодного процессов при указанном способе снятия поляризационных кривых должны быть одинаковыми. При этом предполагают, что омическими потерями можно пренебречь и, следовательно, рассматривать поверхность корродирующего металла как эквипотенциальную. Характер совмещенных поляризационных кривых, получаемых по этому методу, который показан на рисунке 4 (сплошные линии).
Рисунок 4 - Поляризационная диаграмма коррозионного процесса, протекающего с водородной деполяризацией
Точка пересечения анодной и катодной поляризационных кривых дает на оси абсцисс скорость коррозии, а на оси ординат - величину стационарного потенциала. Так как вблизи стационарного потенциала поляризационные данные перестают укладываться в полулогарифмическую зависимость, то скорость коррозии находят обычно по точке пересечения экстраполированных прямолинейных участков поляризационных кривых (пунктирные линии на рисунке 4). Сопоставление величин скорости коррозии, рассчитанных на основании поляризационных измерений, с полученными непосредственно из убыли веса (или по объему выделившегося водорода в кислых средах) для свинца, никеля и железа показало, что оба ряда данных совпадают друг с другом в пределах ошибок опыта. Это позволило широко использовать метод поляризационных измерений при количественном изучении коррозионных процессов.
Стационарный коррозионный потенциал εс лежит обычно между обратимыми потенциалами анодного и катодного процессов, обусловливающих появление коррозии. Он всегда положительнее равновесного потенциала анодной реакции и отрицательнее равновесного потенциала катодной реакции. Поэтому при стационарном потенциале скорость ионизации
металла больше скорости разряда металлических ионов
, а скорость разряда иона водорода
больше скорости ионизации его молекул
. Такое соотношение скоростей сохраняется до тех пор, пока не будут достигнуты соответствующие равновесные потенциалы. В этом случае частные токи для каждого из двух процессов сделаются равными соответствующим токам обмена i0М и i0H. Продолжение катодной и анодной поляризационных кривых от стационарного потенциала до обратимых потенциалов электродных реакций показано на рисунке 4 штрихпунктирными прямыми. Скорость коррозии является функцией тока обмена катодной и анодной реакций. С увеличением тока обмена (при тех же равновесных потенциалах) скорость коррозии растет. Скорость коррозии должна меняться параллельно с изменением коэффициента переноса α. Таким образом, коррозионная диаграмма позволяет связать скорость коррозии с основными кинетическими параметрами лежащих в ее основе электродных реакций. Эту связь можно выразить и аналитически. При стационарном потенциале скорость коррозии должна быть равна скорости растворения металла и в то же время скорости катодной реакции; в рассматриваемом случае - скорости катодного выделения водорода. На этом основании можно написать следующее уравнение 10:
ic = i0H℮-(kηH(1 – α)F)/RT = i0M℮(aηMα2zF)/RT , (10)
где kηH и aηM - соответственно катодная поляризация при выделении водорода и анодная поляризация при растворении металла;
(1— α) и α2 — коэффициенты переноса для реакции выделения водорода и растворения металла;
z — валентность металла.
Обозначим (1—α) через α2 и снимем индексы к и а у величины поляризации. Водородное перенапряжение в условиях коррозии равно разности между стационарным коррозионным потенциалом и обратимым потенциалом водородного электрода в данных условиях (уравнение 11):
ηH = εc - Hεr (11)
Аналогичное уравнение справедливо для анодной поляризации металла (уравнение 12).
ηМ = εc - Мεr (12)
Подставив в уравнение 10 вместо ηH и ηМ их значение из уравнения 11 и 12, решим полученное уравнение относительно стационарного потенциала коррозии (уравнение 13).
εc = 2.303
(13)
Подстановка этого значения εc в уравнение 10 после несложных преобразований приводит к уравнению 14.
(14)
Уравнения 13 и 14 позволяют рассчитать величину потенциала металла в условиях его коррозии, а также скорость коррозионного разрушения, если только известны токи обмена, коэффициенты переноса и равновесные потенциалы анодной и катодной реакций.
Поляризационная диаграмма на рисунке 5, так же как и уравнения 13 и 14, относятся к тому случаю, когда скорость коррозии определяется чисто кинетическими ограничениями, то есть химической поляризацией. Это отвечает коррозии с водородной деполяризацией.
Другим важным случаем электрохимического разрушения металлов является их коррозия с кислородной деполяризацией. В связи с малой растворимостью кислорода в водных средах, а также в связи с тем, что его коэффициент диффузии значительно меньше коэффициента диффузии ионов водорода, скорость коррозии с кислородной деполяризацией обычно определяется диффузией. На рисунке 5 в упрощенном виде представлена типичная поляризационная диаграмма процесса коррозии с кислородной деполяризацией.
Рисунок 5 - Упрощенная поляризационная диаграмма процесса коррозии с кислородной деполяризацией
Скорость коррозии в этом случае оказывается равной предельному току диффузии кислорода к поверхности корродирующего металла (уравнение 15).
ic = 2oid (15)
Скорость коррозии с кислородной деполяризацией поэтому почти не зависит (в известных пределах) от природы растворяющегося металла, в частности от величин его равновесного потенциала и анодной поляризации. В этом легко убедиться, если построить коррозионные диаграммы для трех различных металлов М, M1 и М2 (штрих-пунктирные линии на рисунке 5). На коррозию с кислородной деполяризацией может накладываться коррозия за счет выделения водорода, если равновесный потенциал водородного электрода в данном растворе положительнее равновесного потенциала корродирующего металла (прямые 1, 2 и 3 на рисунке 5). Величина предельного тока определяется растворимостью кислорода и величиной его коэффициента диффузии, но не зависит от природы металла, на котором восстанавливается кислород. В результате этого скорость процесса коррозии с кислородной деполяризацией меньше зависит от степени чистоты металла, чем скорость процесса коррозии с водородной деполяризацией, и изменяется в более широких пределах при изменении условий размешивания раствора и способа подвода кислорода [1,3-5].
6 Методы защиты металлов от коррозии
В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью. Любой метод защиты изменяет ход коррозийного процесса, уменьшая скорость или прекращая его полностью. Поляризационные или коррозионные диаграммы, наиболее полно характеризующие коррозионный процесс, должны отражать и те изменения в ходе его протекания, какие наблюдаются в условиях защиты. Поляризационные диаграммы можно использовать поэтому при разработке возможных путей предохранения металлов от коррозии. Они служат основой при выяснении принципиальных особенностей того или иного метода. В связи с этим при рассмотрении существующих методов защиты будем пользоваться поляризационными диаграммами в их несколько упрощенном виде (рисунок 6). На таких диаграммах постулируется линейная зависимость между плотностью тока и потенциалом каждой частной реакции. Это упрощение оказывается вполне допустимым при качественной оценке особенностей большинства методов защиты.
Эффективность защиты выражают при помощи коэффициента торможения у или степени защиты Z.
Рисунок 6 - Упрощенная поляризационная диаграмма коррозионного процесса, протекающего с водородной деполяризацией
Коэффициент торможения показывает, во сколько раз уменьшается скорость коррозии в результате применения данного способа защиты (уравнение 16).
ϒ = ic/i׳c (16)
где ic и i׳c — скорость коррозии до и после защиты. Степень защиты указывает, насколько полно удалось подавить коррозию благодаря применению этого метода (уравнения 17 и 18).
Z = (ic - i׳c)/ ic (17)
или
Z% = (ic - i׳c) 100/ ic (18)
Все методы защиты условно делятся на следующие группы:
- электрические методы;
- методы, связанные с изменением свойств корродирующего металла;
- методы, связанные с изменением свойств коррозионной среды;
- комбинированные методы.
Электрические методы защиты основаны на изменении электрохимических свойств металла под действием поляризующего тока. Наибольшее распространение получила защита металлов при наложении на них катодной поляризации. При смещении потенциала металла в сторону более электроотрицательных значений (по сравнению с величиной стационарного потенциала коррозии) скорость катодной реакции увеличивается, а скорость анодной падает (рисунок 6). Если при εс соблюдалось равенство
ik =ia, то при более отрицательном значении ε' это равенство нарушается -
i׳k ≠i׳a, причем i׳k>i׳a.
Уменьшение скорости анодной реакции при катодной поляризации эквивалентно уменьшению скорости коррозии. Коэффициент торможения при выбранном потенциале ε' (рисунок 4) будет
ϒ = ic/i׳c = ic/i׳а = ic/0,5iс= 2,
а степень защиты достигает 50%:
Z = (ic - i׳c) 100/ ic = (ic – i׳а) 100/ ic = (ic – 0,5ic) 100/ ic =50%
Внешний ток iвн , необходимый для смещения потенциала до значения ε', представляет собой разницу между катодным и анодным токами:
iвн = i׳к – i׳а;
его величина на рисунке 6 выражается прямой ab. По мере увеличения внешнего тока потенциал смещается в более отрицательную сторону и скорость коррозии должна непрерывно падать. Когда потенциал корродирующего металла достигает равновесного потенциала анодного процесса аεг, скорость коррозии сделается равной нулю ( ic = iа = 0), коэффициент торможения - бесконечности, а степень защиты - 100%. Плотность тока, обеспечивающая полную катодную защиту, называется защитным током iз. Его величине на рисунке 6 соответствует отрезок cd. Величина защитного тока не зависит от особенностей протекания данной анодной реакции, в частности от величины сопровождающей ее поляризации, а целиком определяется катодной поляризационной кривой. Так, например, при переходе от водородной к кислородной деполяризации сила защитного тока уменьшается и становится равной предельному диффузионному току (отрезок cd' на рисунке 6).
Защита металла катодной поляризацией применяется для повышения стойкости металлических сооружений в условиях подземной (почвенной) и морской коррозии, а также при контакте металлов с агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью, и потери напряжения, связанные с протеканием защитного тока, а следовательно, и расход электроэнергии сравнительно невелики. Катодная поляризация защищаемого металла достигается наложением тока от внешнего источника (катодная защита) или созданием макрогальванической пары с менее благородным металлом или сплавом (обычно применяются алюминий, магний, цинк и их сплавы). Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называется «жертвенным анодом».
Разработана защита металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствии внешней поляризаций.
K электрическим методам защиты относится также так называемый «электродренаж», применяемый для борьбы с разрушающим действием блуждающих токов на подземные металлические сооружения. Сущность электродренажа заключается в том, что после нахождения опасных в (коррозионном отношении) анодных зон на подземном металлоизделии их соединяют проводниками первого рода с источником блуждающих токов (трамвайным рельсом, кабелем постоянного тока и т. п.). При этих условиях весь ток проходит по металлическому проводнику и опасность анодной реакции ликвидируется.
Методы защиты, связанные с изменением свойств корродирующего металла, осуществляются специальной обработкой его поверхности или при помощи легирования.
Обработка поверхности металла для уменьшения коррозии проводится следующими способами: покрытием металла поверхностными пассивирующими пленками из его труднорастворимых соединений (окислы, фосфаты, сульфаты, вольфраматы или их комбинации), созданием защитных слоев из смазок, битумов, красок, эмалей. и нанесением покрытий из других металлов, более стойких в данных конкретных условиях, чем защищаемый металл (лужение, цинкование, меднение, никелирование, хромирование, свинцевание, родирование).















