166323 (624982), страница 2

Файл №624982 166323 (Применение ЭВМ в технологии лекарственных препаратов) 2 страница166323 (624982) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Обозначим волновые функции двух изолированных атомов φа(1) и φb(2). Тогда волновая функция ψІ системы из двух несвязанных атомов выражается произведением ψІ = φа(1) ∙ φb(2).

Допустим, что атомы сблизились на расстояние, достаточное для образования химической связи, и что при этом функция ψІ не изменилась и близка к истинной. Однако в новом состоянии принадлежность каждого электрона к любому из ядер равновероятна, и можно записать, что

ψІІ = φа(2) ∙ φb(1). Тога ψ± - функция молекулы Н2 является линейной комбинацией двух атомных функций:

ψ± = с1ψІ + с2ψІІ, (12)

где с1 и с2 – некоторые постоянные.

Уравнение (12) является общим решением уравнения (10). Конкретное его решение состоит в нахождении значений с1 и с2 и далее по ψ± приближенного значения энергии Е±. Искомую ψ-функцию выбирают с помощью вариационного метода, которые дает

с1 = ± с2 и ψ± = ψІ + ψІІ.

Функция ψ+ = φа(1)∙φb(2) + φа(2)∙φb(1), не изменяющая знак при перестановке электронов, называется симметричной. Меняющая знак функция ψ- = φа(1)∙φb(2) – φа(2)∙φb(1), называется асимметричной.

Выражение для энергии, которая отвечает функции ψ±, имеет вид:

, (13)

Уравнение (13) показывает, как должно изменяться значение полной энергии для симметричной и асимметричной функции. Величины J, K и S обозначают три интеграла:

  1. кулоновский интеграл J выражает энергию взаимодействия зарядов при отсутствии обмена электронов между ядрами:

,

где можно рассматривать как члены гамильтониана, выражающие взаимодействие между атомами;

  1. обменный интеграл К характеризует уменьшение энергии системы, связанное с обменом электронов местами:

;

  1. интеграл перекрывания S отвечает перекрыванию волновых функций соединяющихся атомов:

Сравнением величин интегралов можно показать, что на расстоянии

R = r0 |К|>>|J| (при этом обе величины отрицательны). S ≈ 0,6, а решение уравнения (13) дает два значения энергии Е+ < 2Е0 и Е- > 2Е0. Следовательно, образование химической связи (минимум энергии Е+) характеризуется функцией ψ+.

Вид волновой ψ-функции каждого электрона зависит только от трех квантовых чисел n, l, m. Очевидно, электроны в молекуле, состояние которых описывается симметричной ψ+-функцией, должны иметь различные спиновые квантовые числаих спины противоположно направлены, или антипараллельны. Наоборот, ψ--функция отвечает состоянию электронов с одинаково направленными или параллельными спинами.

Таким образом, метод ВС приводит к выводу, что основное значение при образовании химической связи имеет обменное взаимодействие зарядов, удовлетворяющее условию антипараллельности спинов электронов.

Метод ВС позволяет решать ряд задач, связанных с изучением молекул. С его помощью получены ценные сведения о строении и свойствах бензола и его соединений, некоторых многоатомных молекул ионов. Используемые в методе валентные схемы наглядны и близки к классическим химическим формулам. Однако, составляющий основу метода принцип обязательного спаривания электронов с антипараллельными спинами справедлив лишь для S-электронов. С точки зрения метода ВС невозможно понять свойства парамагнитных молекул (например, О2), свойства многих сопряженных и ароматических систем, а также большинства неорганических молекул. Встречаются немалые трудности и при решении других задач.

4. Теория ковалентной связи. Метод молекулярных орбиталей (МО).

Метод МО начал разрабатываться в 30-х годах ХХ века в работах ряда ученых (Гунд, Малмекен и др.). В этом методе каждый электрон рассматривается движущимся в поле всех электронов и всех ядер молекулы. Как и в других методах квантовой химии при этом используется одноэлектронное приближение, согласно которому каждый электрон описывается отдельной волновой функцией, а из них составляется полная волновая функция молекулы. Одновременно учитывается адиабатическое приближение Борна-Оппенгеймера; движение электронов молекулы ввиду относительной замедленности колебательных движений массивных ядер рассматривается в поле фиксированных ядер.

Для построение молекулярных орбиталей используется вариант метода, называемый линейной комбинацией атомных ордиталей – молекулярные орбитали (ЛКАО – МО). В его основе лежит способ получения одноэлектронных молекулярных орбиталей (МО) в виде линейной комбинации атомных орбиталей (ЛКАО). Если по-прежнему для двухатомной молекулы (например, Н2) обозначить волновые функции атомов φа и φb (атомные орбитали), то в общем виде их линейные комбинации будут описывать движение каждого электрона в молекуле следующим образом:

,

где і – номер МО;

j – номер АО;

сj – изменяемые параметры, учитывающие долю каждой из суммируемых орбиталей (находятся из условия минимума энергии).

Далее в методе МО допускается, что волновая функция, описывающая состояние многоатомной молекулы, может быть представлена как произведение волновых функций одноэлектронных МО:

ψI = ψ1ψ2 = [φa(1) + φb(1)] [φа(2) ∙ φb(2)].

Таким образом, состояние молекулы Н2 в методе МО определяется совокупностью ряда слагаемых:

ψI = φa(1)∙φb(2) + φа(2)∙φb(1) + φа(1)∙φа(2) + φb(1)∙φb(2)

Сравнение последнего соотношения с применявшимися в методе ВС функциями ψ± показывает, что в методе МО волновая функция ψI отличается третьим и четвертым членом. Оба эти члена характеризуют случаи, когда два электрона находятся либо у одного, либо у другого ядра, т.е. соответствуют ионным состояниям молекулы На- – Нb+ и На+ – Нb-. В действительности роль таких состояний в характеристике МО невелика и составляет около 6 % от энергии обменного взаимодействия, которым определяется ковалентная связь.

Последующие расчеты в методе МО, как и в методе ВС, направлены на определение энергии системы. Здесь так же, как и в методе ВС, получают два значения (уровня) энергии. Первый уровень отвечает соединению атомов и образованию химической связи, поэтому первая орбиталь называется связывающей. Второй уровень характеризует отталкивание, и соответствующая орбиталь называется разрыхляющей. Схема образования химической связи в молекуле Н2 в методе МО изображена на рис. 2.

Рис. 2. Схема образования ковалентной связи в Н2.

На рисунке показано, что образование химической ковалентной связи происходит за счет спаривания двух электронов с противоположной ориентацией спинов. Ячейка, соответствующая состоянию этих электронов, расположена ниже ячеек АО, так как энергия МО ψІ меньше, чем у исходных АО. В то же время энергия МО ψІІ больше и ячейка свободна от электронов. При возбуждении молекулы и появлении на верхней МО так называемых разрыхляющих электронов система распадается на отдельные атомы.

Для составления схем образования химических связей более сложных молекул необходимо руководствоваться рядом положений. Во-первых, принцип построения АО повторяет картину заполнения электронных оболочек в атомах. В соответствии с принципом Паули и правилом Гунда заполнение электронами начинается с низшей АО.

В образовании химической связи участвуют лишь валентные электроны. Во-первых, число МО в сложной молекуле увеличивается пропорционально числу атомов в молекуле. В общем случае при использовании NАО образуется NМО. Из них всегда N/2 является связывающими МО и N/2 – разрыхляющими МО. Кратность связи устанавливается избытком числа связывающих электронов (т.е. разностью между количеством связывающих и разрыхляющих электронов), поделенной на 2.

Рассмотрим более сложный случай образования МО на примере молекулы кислорода. Здесь два разрыхляющих электрона расположены на вырожденном уровне π*2р. В соответствии с правилом Гунда они неспарены и имеют параллельные спины. Подсчет кратности связи дает валентность 2, однако из рисунка видно, что обычно принимаемая валентная схема О = О неверна.

Рис. 3 Схема образования МО в молекуле О2.

В действительность в молекуле О2 в основном ее состоянии двойная связь образуется из трехкратной за счет ее разрыхления двумя электронами. Отсюда видно, что молекула О2 имеет два свободных электрона. Следовательно, кислород должен обладать парамагнитными свойствами. Этот вывод вполне согласуется с опытом.

Метод МО широко используется для изучения химических свойств и реакционной способности простых и сложных соединений. Он, в частности, применяется при исследовании молекул с сопряженными связями, а также при описании свойств многих неорганических соединений.

5. Упрощенный метод МО Хюккеля.

Вариант метода МО, предложенный Хюккелем (МОХ), содержит довольно грубые допущения и, как правило, не позволяет осуществлять точные расчеты. Несмотря на это, он часто используется в органической химии при качественном рассмотрении строения соединений с сопряженными связями, для сопоставления их свойств и предсказывания реакционной способности.

Главной особенностью метода МОХ является π-электронное приближение, в соответствии с которым молекулы, имеющие σ- и π-связи, рассчитывают лишь с учетом π-электронов. σ-электроны предполагаются локализованными возле приближенных ядер и не рассматриваются. Для всех атомов, образующих π-связи, π-электроны считаются общими и делокализованными во всем пространстве, занимаемом этими атомами. Волновая функция и уравнение Шредингера записываются лишь для π-электронов, а σ-электроны включаются в ядерный остов, движение которого не учитывается.

Кроме π-электронного приближения, в методе МОХ используется следующими допущениями:

  1. кулоновские интегралы одинаковых атомов считают равными:

Jii = Jij = α;

  1. резонансные интегралы одинаковых соседних атомов считают равными друг другу, а более удаленных – равными нулю:

kij = β (при j ± 1); kij = 0 (при i>j+1 и i

  1. интегралы непрерывания принимают равными нулю Sij = 0 (при i ≠ j);

нормировочные интегралы Sii = Sij = 1.

6. Особенности квантово-химических методов.

Методы современной квантовой химии распространяются на все более сложные объекты.

Общие принципы квантово-химических расчетов во всех случаях остаются сходными. Каждый объект с позиций метода МО считается единой системой, подчиняющейся законам квантовой механики. Обычно применяются адиабатическое и одноэлектронное приближения, вариант ЛКАОМО, вариационный метод с уравнениями Гутана. Кроме метода ССП (самосогласованного поля) и теории возмущений используется целый ряд упрощенных так называемых полуэмпирических методов.

Появление последних связано с тем, что последовательное применение метода МО к различным молекулярным объектам связано с большими вычислительными трудностями. С ростом количества частиц системы сильно увеличивается число членов уравнения Шредингера, отражающих потенциальную энергию их взаимодействия, а потому и количество подлежащих решению волновых уравнений.

В настоящее время наметилось два пути развития квантовой химии. Один из них – неэмпирический – предполагает минимальное привлечение экспериментальных данных и наиболее полный расчет с использованием орбиталей всех электронов исследуемой системы. Его недостатком являются нарастающие вычислительные трудности при увеличении сложности системы.

Другой путь реализуется с помощью различных полуэмпирических методов, которые используют дополнительные приближения – учитывают не все, а лишь валентные электроны или даже часть из них, как в методе МОХ; интегралы, появляющиеся в расчетах, либо принимаются за нуль, либо считаются независящими от положения атомов в молекуле и определяются из опыта или расчетов и т.д. Такие методы не столь сложны и целесообразны для сравнительной оценки свойств однотипных соединений.

7. Некоторые полуэмпирические методы.

Из полуэмпирических методов заслуживают внимания метод "объединенного атома" и "метод атомов в молекулах" Эти методы основаны на рассмотрении непрерывной зависимости электронной энергии молекулы от расстояния между ядрами. Если все межъядерные расстояния в молекуле мысленно устремить к нулю, то электронная оболочка молекулы переходит в электронную оболочку т.н. объединенного атома, заряд ядра которого равен сумме зарядов ядер атомов, составляющих молекулу. В методе объединенного атома волновая функция молекулы разлагается в ряд по взаимно ортогональным волновым функциям различных состояний объединенного атома, ядро которого мысленно помещается в центр тяжести положительных зарядов ядер в молекуле. В расчете энергии молекулы при определении значений ряда интегралов используются спектроскопические данные об энергии термов объединенного атома. В методе "атомов в молекулах" электронная волновая функция молекулы разлагается в ряд по волновым функциям, описывающим различное состояние продуктов диссоциации молекулы (атомов или ионов), а в расчете в энергии молекулы используются опытные значения энергии этих продуктов. Привлечение экспериментальных данных атомной спектроскопии позволяет в методе "объединенного атома" и в методе "атомов в молекулах" в значительной мере уменьшить ошибки, связанные с неточностями в учете взаимной зависимости в движении различных электронов (т.н. эффектов электронной корреляции). Однако расчеты по этим методам могут привести к другим, трудно контролируемым погрешностям, что является серьезным ограничением их применимости.

Заслуживают внимания также модельные методы квантовой химии, в которых для описания электронной структуры сложных молекул используются простые модели, отражающие важнейшие особенности электронной структуры реальных объектов. Типичным примером такого рода является модель свободных электронов для π-электронов в сопряженных и ароматических углеводородах. В простейшем варианте этой модели принимается, что π-электроны свободно движутся вдоль цепочки сопряженных связей. Одномерные волновые функции и уровни энергии электронов легко вычисляются:

Характеристики

Тип файла
Документ
Размер
1,46 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6644
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее