164172 (624654), страница 6
Текст из файла (страница 6)
5 Корреляционно – регрессионный анализ влияния факторов
Имеются данные и влиянии стоимости основных фондов на душу населения и среднегодовой численности занятых в экономике на Валовой региональный продукт на душу населения (все показатели за 2005г.).
Таблица 14.1 Исходные данные
Наименование регионов | Среднегодовая численность занятых в экономике, тыс.чел. | Основные фонды на душу населения, млрд.руб. | Валовой региональный продукт на душу населения, тыс.руб. |
Y | X1 | X2 | |
Республика Башкортостан | 1797,6 | 868425 | 93745,1 |
Республика Марий Эл | 334,4 | 133723 | 46696,9 |
Республика Мордовия | 399,1 | 183836 | 51369,8 |
Республика Татарстан | 1778,0 | 1090879 | 128222,0 |
Удмуртская Республика | 764,8 | 368307 | 90401,7 |
Чувашская Республика | 597,5 | 253775 | 53552,4 |
Пермский край | 1318,9 | 961938 | 118619,4 |
Кировская область | 714,6 | 322973 | 54954,6 |
Нижегородская область | 1748,9 | 688092 | 87429,3 |
Оренбургская область | 1020,3 | 480330 | 99405,5 |
Пензенская область | 676,2 | 262655 | 52540,0 |
Самарская область | 1579,0 | 1056262 | 125757,4 |
Саратовская область | 1169,5 | 556180 | 65314,9 |
Ульяновская область | 604,9 | 234805 | 59989,2 |
Курганская область | 434,3 | 213335 | 50959,1 |
Свердловская область | 2093,8 | 1424665 | 107621,1 |
Тюменская область | 1890,6 | 5405244 | 668272,2 |
Челябинская область | 1674,4 | 892723 | 98820,3 |
Республика Алтай | 84,9 | 22026 | 43127,3 |
Республика Бурятия | 386,6 | 221056 | 77532,7 |
Республика Тыва | 104,3 | 19490 | 37856,2 |
Республика Хакасия | 244,1 | 120518 | 77332,8 |
Алтайский край | 1105,1 | 382472 | 53118,0 |
Красноярский край | 1424,8 | 823467 | 150814,0 |
Иркутская область | 1137,7 | 651069 | 101766,6 |
Кемеровская область | 1302,7 | 629492 | 103758,5 |
Новосибирская область | 1221,7 | 595609 | 88619,4 |
Омская область | 939,1 | 357195 | 108147,0 |
Томская область | 478,9 | 319795 | 154131,1 |
Читинская область | 481,8 | 316690 | 61526,8 |
Республика Саха (Якутия) | 469,1 | 450823 | 192599,0 |
Камчатский край | 180,9 | 100939 | 92039,1 |
Приморский край | 980,2 | 457446 | 113818,2 |
Хабаровский край | 721,3 | 437286 | 86913,2 |
Амурская область | 424,2 | 384833 | 125392,3 |
Магаданская область | 93,8 | 93758 | 156923,9 |
Сахалинская область | 277,8 | 207065 | 228624,4 |
Еврейская автономная область | 79,8 | 52480 | 75695,8 |
Чукотский автономный округ | 38,5 | 29615 | 244096,3 |
Таблица 14.2 Корреляционная матрица
У | Х1 | Х2 | |
у | 1 | ||
Х1 | 0,617107 | 1 | |
Х2 | 0,262244 | 0,844487 | 1 |
Корреляционная матрица содержит частные коэффициенты корреляции. Коэффициенты второго столбца матрицы характеризуют степень тесноты связи между результативным (у) и факторными признаками (х1, х2). Связь между среднегодовой численностью занятых в экономике и стоимостью основных фондов ( rух1 = 0,617) прямая, слабая; связь между среднегодовой численностью занятых в экономике и валовым региональным продуктом на душу населения ( ryx2 = 0,262 ) прямая, слабая.
Таблица 14.3 Регрессионная статистика
Регрессионная статистика | |
Множественный R | 0,783895481 |
R – квадрат | 0,614492126 |
Нормированный R – квадрат | 0,593075021 |
Стандартная ошибка | 378,2620843 |
Наблюдения | 39 |
Множественный коэффициент корреляции R = 0,783 показывает, что теснота связи между среднегодовой численностью занятых в экономике и факторами, включенными в модель, сильная. Множественный коэффициент детерминации ( R – квадрат ) D = 0,614, т.е. 61,4% вариации уровня рентабельности объясняется вариацией изучаемых факторов
Таблица 14.4 Дисперсионный анализ
df | SS | MS | F | Значимость F | |
Регрессия | 2 | 8210529,993 | 4105264,996 | 28,69165325 | 3,5367Е-08 |
Остаток | 36 | 5150959,36 | 143082,2044 | ||
Итого | 38 | 13361489,35 |
Проверим значимость коэффициента множественной корреляции, для этого воспользуемся F – критерием, для чего сравним фактическое значение F с табличным значением Fтабл. При вероятности ошибки а = 0,05 и степенях свободы v1 = k-1=2-1=1, v2=n-k=39-2=37, где k – число факторов в модели, n – число наблюдений, Fтабл.= 4,08. Так как Fфакт = 28,69 > Fтабл.= 4,08, то коэффициент корреляции значит, следовательно, построенная модель в целом адекватна.
Таблица 14.5 а Коэффициенты регрессии
Коэффициенты | Стандартная ошибка | t - статистика | Р- Значение | |
У - пересечение | 893,7984141 | 96,10057616 | 9,300656144 | 4,15477Е-11 |
Х1 | 0,000947963 | 0,000132792 | 7,138709388 | 2,16101Е-08 |
Х2 | -0,005196333 | 0,001112397 | -4,671294661 | 4,08374Е-05 |
Таблица 14.5 б Коэффициенты регрессии
Нижние 95% | Верхние 95% | Нижние 95,0% | Верхние 95,0% |
698,8974135 | 1088,69941 | 698,8974135 | 1088,699415 |
0,000678648 | 0,00121728 | 0,000678648 | 0,001217277 |
-0,007452378 | -0,0029403 | -0,007452378 | -0,002940288 |
Используя таблицу 1.5 составим уравнение регрессии:
У = 893,79 + 0,0009Х1 – 0,005Х2
Интерпретация полученных параметров следующая:
а0 = 893,79 – свободный член уравнения регрессии, содержательной интерпретации не подлежит;
а1 = 0,0009 – коэффициент чистой регрессии при первом факторе свидетельствует о том, что при увеличении основных фондов на душу населения на 1 млрд. руб. среднегодовая численность населения занятых в экономике увеличится на 0,0009% при условии, что другие факторы остаются постоянными;
а2 = -0,005 – коэффициент чистой регрессии при втором факторе свидетельствует о том, что при увеличении валового регионального продукта с 1 тыс.руб. на 1 тыс.чел. среднегодовая численность занятых в экономике уменьшится на 0,005%, при условии, что факторы остаются постоянными.
Проверку значимости коэффициентов регрессии осуществим с помощью t – критерия Стьюдента; для этого сравним фактические значения t – критерия с табличным значением t – критерия. При вероятности ошибки а = 0,05 и степени свободы v = n-k-1= 39-2-1=36, k – число факторов в модели, n – число наблюдений, tтабл = 1,68. Получим
t1 факт = 7,14 > tтабл. = 1,68
t2 факт = -4,67 > tтабл. = 1,68
Значит, статистически значимым являются первый и второй факторы. В этом случае модель пригодна для принятия решений, но не прогнозов.
Таблица 14.6 Описательная статистика
У | Х1 | Х2 | |
Среднее | 840,3615 | 565930 | 113525,7 |
Стандартная ошибка | 94,95183 | 138158 | 16492,55 |
Медиана | 714,6 | 368307 | 92039,1 |
Мода | #Н/Д | #Н/Д | #Н/Д |
Стандартное отклонение | 592,974 | 862796 | 102996 |
Дисперсия выборки | 351618,1 | 7,4E+11 | 1,06E+10 |
Эксцесс | -0,914121 | 27,3251 | 22,87771 |
Асимметричность | 0,480141 | 4,88112 | 4,36911 |
Интервал | 2055,3 | 5385754 | 630416 |
Минимум | 38,5 | 19490 | 37856,2 |
Максимум | 2093,8 | 5405244 | 668272,2 |
Сумма | 32774,1 | 2,2E+07 | 4427504 |
Счет | 39 | 39 | 39 |
Средние значения признаков, включённых в модель У = 840,4%;