151871 (622002), страница 4

Файл №622002 151871 (Моделирование динамики яркостной температуры земли методом инвариантного погружения и нейронных сетей) 4 страница151871 (622002) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Рис. 3. Схема передвижного штатива с радиометрами

Рис. 4. Передвижение рамы с радиометрами с одного участка на другой

Рис. 5. Экспериментальные участки

Конструкция и размеры передвижного штатива (рамы) были выбраны исходя из удовлетворения следующим критериям [1]:

  1. Эталоны и исследуемые участки должны находиться в дальней зоне антенн радиометров

  2. Ширина главного лепестка по уровню 0,5 дб должна быть меньше геометрических размеров, эталонов и участков.

  3. Угол наклона антенн должен составлять 100

Участки №1, №2, №3, №4 являются экспериментальными участками, на которых расположены следующие виды почв: земля, загрязненная нефтью, песок, глина, чернозем, соответственно. На участке №5 расположен лист металла, а на участке №6 – емкость с водой. Участки №5 и №6 используются для калибровки оборудования, а измерения снятые с этих участков являются опорной точкой (калибровкой) для расчета яркостных температур почвы участков №1 – №4.

Штатив (рама) передвигается с одного на другой участок, измерения проводятся последовательно радиометрами с частотой 5 Gh, затем 11 Gh, затем 3,6 Gh.

При калибровке радиометров используются следующие эталоны излучения: излучения неба, отраженное металлическим листом, излучение гладкой водной поверхности, излучение поглощающего покрытия. Размеры эталонов должны превышать размеры пятна, излучающего в главный лепесток, чтобы дифракционными явлениями на краях образцов можно пренебречь.

В ходе эксперимента замерялись: время, температура окружающей среды, температура слоя почвы на глубине 0,5 см и 2 см, а также измерялась яркостная температура почв.

Дважды в день брались пробы почв на влажность: поверхностный слой 0–1 см, 1–2 см, и 3–4 см.

Исследуемыми объектами являлись участки №2 и №3, песчаная и глинистая почва соответственно (рис. 4; рис. 5).

Рис. 6. Песчаная почва. Участок №2

Рис. 7. Средний суглинок. Участок №3

Из полученных данных видно, что почти одинаковые в оптическом диапазоне почвы, кардинально отличаются по физическим свойствам.

Таблица 1. Гранулометрический состав почв (% от массы сухой почвы)

Размер фракций, мм

Почва

1–0,25

0,25–0,05

0,05–0,01

0,01–0,005

0,005–0,001

<0,001

<0,01

Песок(№2)

36,1

43,4

11,4

5,5

1,4

0,9

1,3

Глина (№3)

0,80

27,24

28,03

3,86

5,22

34,80

43,88

Был проведен цикл измерений в течении четырех дней яркостной температуры почвы «сухая-влажная-сухая». Цикл измерений состоит из 39 точек, для трех радиометров разной частоты (и соответственно разной глубины проникновения в почву). Измерения на участках проводятся между двумя опорными точками: калибровкой металлом и водой.

    1. Постановка задачи. Поиск алгоритма решения

Задачей построенной нейронной сети должно быть восстановление параметров почв по экспериментальным данным значения яркостной температуры с радиометров различной частоты в момент экспериментального получения проб влажности почв.

Для моделирования методом Нейронных сетей используются несколько программ, среди них прикладной пакет для MathLab 6.1, Statistica Neural NetWorks, NNMath 3.1 и др. Будем использовать программы MathLab 6.1, Statistica Neural NetWorks, выбранные за простоту работы и возможности настройки нужной модели.

В общем случае, для получения алгоритмов и моделей выполняется следующее:

  1. Определяется изучаемый класс объектов (представленный входными и выходными данными).

  2. Для этого класса выбирается настраиваемая модель (модель, параметры которой можно изменить), удовлетворяющая определенным критериям и требованиям.

  3. Выбирается оценка качества идентификации (потери, характеризующие различие между выходными величинами объекта и модели).

  4. Формируется алгоритм идентификации, который, изменяя параметры модели, минимизирует потери.

Выбор и разработка моделей и алгоритмов требуют серьезных усилий для экспериментального исследования и сравнения с уже ранее предложенными. В то же время это предоставляет большую свободу в выборе направления в науке, знания которой будут привлекаться для создания новых моделей и алгоритмов.

Будем пользоваться двумя подходами в решении поставленной задачи:

  1. Используем модель двухслойного персептрона, и поэтапно увеличиваем количество нейронов на каждом слое с 3 до 5, параметры которых оптимально подобраны в исследовании[15].

  2. Функция автоматического подбора параметров, которая присутствует в программе Statistica Neural NetWorks и работает на основе анализа количества и вида входных и выходных данных.

Рис. 8. Двухслойный персептрон с одним скрытым слоем и 3 нейронами на каждом слое

Рис. 9. Двухслойный персептрон с одним скрытым слоем и 5 нейронами на каждом слое

Рис. 10. Нейронная сеть построенная методом автоматического подбора параметров

Радиометрическое исследование природной среды и восстановление требуемых параметров выполняется в работах. С учетом предлагаемой в рефракционной модели КДП почв связь между радиоизлучательной способностью почвогрунта и его КДП может быть разрешена в явном виде относительно объемной влажности. При этом решение содержит ряд априорно задаваемых параметров. Входными данными будут являться яркостные температуры, полученные при теоретическом расчете методом инвариантного погружения. Выходными данными являться параметры почв: объемная влажность, уровень слоя, и КДП почвы (при анализе которой можно определить класс почвы).

В решении поставленной задачи будем считать отсутствие как шума, создаваемого растительностью (т.к. участки в эксперименте были подготовлены и очищены от растительности), так и техногенного шума. При наличии же таковых, представляется возможным создание комплекса нейронных сетей, одни из которых будут отвечать за отчистку радиометрического сигнала от шумов, другая – решать основную задачу, в противном случае целесообразно использование вейвлет фильтров для отчистки сигнала.

    1. Метод инвариантного погружения. Теоретический расчет. Режим обучения

Метод инвариантного погружения берет за основу слоистость почвы и различное влагосодержание в различных слоях почвы. Слоистая модель по Башаринову А.Е.

Данная модель содержит следующие допущения:

  1. Излучение считается некогерентным.

  2. Нет ослабления излучения между поверхностью и антенной.

  3. Яркость неба считается изотропной и имеет значение 3К.

  4. Влажность и температура считаются функциями только глубины.

  5. Диэлектрические и тепловые свойства почв постоянны в слоях определённой толщины.

  6. Поверхность почвы считается гладкой. (растительность отсутствует)

Также будем считать, что диэлектрическая проницаемость имеет комплексный вид, тем самым рассмотрим наиболее общий случай.

С увеличением глубины, диэлектрическая проницаемость, а также влажность увеличивается.

Эта модель рассматривает тепловое излучение слоисто-неоднородных неизотермических детерминированных сред с произвольной величиной поглощения. Диэлектрическая проводимость имеет общий комплексный вид:

Пусть температура слоёв имеет следующую зависимость:

,

где z – глубина почвенных слоёв

Для расчета КДП почвы () в работе используется рефракционная модель диэлектрических свойств смесей. Она представляет собой описание влажностной зависимости диэлектрической проницаемости почв. Модель является наиболее успешной при работе в диапазонах СВЧ, учитывает двойственность диэлектрических свойств почв, определяемых содержанием связанной и свободной воды [15].

Рис. 11. Слоистая модель по Башаринову А.Е.

Данная модель учитывает связь свободных и связанных молекул воды в почвах.

Для обучения нейронной сети были использованы данные теоретических расчетов по программе на базе Microsoft Excel, рассчитывающей яркостную температуру по данным КДП полученным, при моделировании методом инвариантного погружения в лаборатории Радиометрического зондирования Земли Омского Государственного Педагогического Университета на основе исследования [15].

Коэффициент диэлектрической проницаемости почв также используется в режиме обучения и восстанавливается по яркостным температурам радиометров различной частоты в нейронной сети с целью классификации типа почв.

Таблица 2. Пример обучающей выборки для соотношений параметров песчаной почвы и яркостных температур при различных частотах радиометра

W, влажность

Е, КДП почвы

dz, глубина погружения

Tf, яркост. Темп. для f=2,73 Gh

Tf, яркост. Темп. для f=6,0 Gh

Tf, яркост. Темп. для f=8,15 Gh

0,02

2,88

0,50

291,57

291,63

291,68

0,04

3,20

0,75

291,15

291,18

291,23

0,06

3,54

1,00

289,89

289,85

289,85

0,08

4,07

1,25

288,61

288,46

288,37

0,10

4,83

1,50

288,47

288,32

288,22

0,12

5,67

1,75

288,25

288,11

288,01

0,14

6,56

2,00

287,98

287,84

287,74

0,16

7,53

2,25

287,66

287,54

287,44

0,18

8,56

2,50

287,32

287,20

287,10

0,20

9,65

2,75

286,95

286,83

286,75

0,22

10,82

3,00

286,56

286,45

286,37

0,24

12,04

3,25

286,15

286,05

285,97

0,26

13,34

3,50

285,73

285,64

285,56

0,28

14,70

3,75

285,30

285,21

285,14

0,30

16,12

4,00

284,86

284,78

284,71

0,32

17,61

4,25

284,41

284,34

284,28

0,34

19,17

4,50

283,96

283,89

283,83

0,36

20,79

4,75

283,50

283,43

283,38

0,38

22,48

5,00

283,04

282,98

282,92

0,40

24,24

5,25

280,48

280,11

279,82

Количество обучающих данных было 120 измерений, что в 5 крат больше количества связей в двухслойном персептроне с 3 нейронами на каждом слое. Количество эпох обучения равнялось 100 в один период установления весов.

Рис. 12. Расчет весов в зависимости от количества эпох при обучение нейронной сети, созданной методом автоматического подбора параметров

Рис. 13. Расчет весов в зависимости от количества эпох обучения при обучение нейронной сети двухслойного персептрона методом обратного распространения ошибки

Рис. 14. Расчет весов в зависимости от количества эпох обучения при обучение нейронной сети двухслойного персептрона методом сопряженного градиента

Из рисунков видно, что наиболее быстро «обучаемой» нейронной сетью, является двухслойный персептрон, устанавливающий параметры весов методом сопряженного градиента. При увеличении количества нейронов на слоях нейронной сети период становления увеличивается во всех вышеприведенных методах обучения нейронной сети.

    1. Решение поставленной задачи на экспериментальных данных методом нейронных сетей

Из экспериментальных данных полученных на производственной практике делается тестовая выборка яркостных температур трех радиометров в момент получения проб влажности почв. Таким образом для тестирования нейронной сети у нас будут два эталона: теоретический расчет яркостной температуры по методу инвариантного погружения на основе экспериментальных данных влажности почв и экспериментальные данные влажности почв.

Рис. 15. Критические или противоречивые данные

Ошибки и фиксации противоречий возникали при восстановлении параметров почв по яркостным температурам, на тех данных, которые были получены в момент эксперимента, когда один из радиометров отключался или выдавал нечеткий результат.

В обученную нейронную сеть, созданную методом автоматического подбора модели и параметров при решении прямой задачи (получение яркостной температуры почв с заданными параметрами) вводим входные данные: экспериментально полученные влажность, глубину слоя.

Получаем на выходе из нейронной сети яркостную температуру для трех радиометров определенные, в среднем, с точностью 5К.

Таблица 3

Почва

Данные полученные экспериментальным путем

Данные полученные сетодом нейронных сетей

Вл-ть

Гл-на

КДП

Яр.Т. f=6,0

Яр.Т. f=2,73

Яр.Т. f=8,15

Яр.Т. f=6,0

Яр.Т. f=2,73

Яр.Т. f=8,15

Глина

0,45714

1,00

29,614

-

142

153

150

139

155

0,41086

2,00

25,218

-

145

153

151

148

154

0,398

3,00

24,059

-

145

153

152

147

148

0,19886

1,00

9,590

151

142

160

154

140

158

0,29657

1,00

15,873

176

160

178

178

165

183

0,17143

2,00

8,109

181

169

182

179

168

181

0,27314

3,00

14,223

179

152

174

184

147

176

0,26757

1,00

13,844

196

174

199

195

174

200

0,222

2,00

10,936

190

175

196

185

177

199

0,31871

3,00

17,515

187

194

203

187

195

205

0,29629

1,00

15,852

179

-

212

181

198

210

Песок

0,32057

1,00

17,656

-

199

225

194

201

230

0,27286

2,00

14,204

-

202

226

193

200

221

0,31829

3,00

17,483

-

207

224

199

212

224

0,24457

1,00

12,333

214

210

231

212

205

233

0,08486

2,00

4,249

220

223

235

225

221

234

0,17657

1,00

8,377

214

210

231

209

215

226

0,17371

2,00

8,228

220

223

235

220

222

235

0,19

3,00

9,098

216

203

219

218

198

221

0,09714

1,00

4,721

230

216

240

234

216

241

0,12057

2,00

5,692

224

221

240

228

223

243

0,11571

3,00

5,483

208

239

245

205

240

247

0,39314

1,00

23,628

204

-

241

204

216

246

В обученную нейронную сеть, созданную методом автоматического подбора модели и параметров при решении обратной задачи (получение параметров почв при заданной яркостной температуре с трех радиометров) вводим входные данные: экспериментально полученные яркостную температуру с трех радиометров разной частоты.

Получаем на выходе из нейронной сети данные об объемной влажности почв определенные, в среднем, с точностью 0,04.

Таблица 4

Почва

Данные полученные экспериментальным путем

Данные полученные сетодом нейронных сетей

Вл-ть

Гл-на

КДП

Яр.Т. f=6,0

Яр.Т. f=2,73

Яр.Т. f=8,15

Вл-ть

Гл-на

КДП

Глина

0,45714

1,00

29,614

-

142

153

0,965

0,250

31,614

0,41086

2,00

25,218

-

145

153

0,836

3,750

26,218

0,398

3,00

24,059

-

145

153

0,976

1,500

22,059

0,19886

1,00

9,590

151

142

160

0,229

0,500

7,590

0,29657

1,00

15,873

176

160

178

0,317

1,500

17,873

0,17143

2,00

8,109

181

169

182

0,121

1,750

7,109

0,27314

3,00

14,223

179

152

174

0,323

2,500

16,223

0,26757

1,00

13,844

196

174

199

0,258

1,000

14,844

0,222

2,00

10,936

190

175

196

0,202

2,500

13,936

0,31871

3,00

17,515

187

194

203

0,319

3,250

19,515

0,29629

1,00

15,852

179

-

212

0,646

3,750

23,852

Песок

0,32057

1,00

17,656

-

199

225

0,731

1,500

19,656

0,27286

2,00

14,204

-

202

226

0,403

4,500

12,204

0,31829

3,00

17,483

-

207

224

0,838

1,500

17,483

0,24457

1,00

12,333

214

210

231

0,225

0,500

14,333

0,08486

2,00

4,249

220

223

235

0,105

1,500

3,249

0,17657

1,00

8,377

214

210

231

0,127

1,500

6,377

0,17371

2,00

8,228

220

223

235

0,174

1,750

8,228

0,19

3,00

9,098

216

203

219

0,210

2,500

11,098

0,09714

1,00

4,721

230

216

240

0,137

1,000

5,721

0,12057

2,00

5,692

224

221

240

0,161

2,500

8,692

0,11571

3,00

5,483

208

239

245

0,086

3,250

7,483

0,39314

1,00

23,628

204

-

241

0,793

4,500

25,628

В обученную нейронную сеть двухслойный персептрон при решении прямой задачи (получение яркостной температуры почв с заданными параметрами) вводим входные данные: экспериментально полученные влажность, глубину слоя.

Получаем на выходе из нейронной сети яркостную температуру для трех радиометров определенные с точностью 3К для двухслойного персептрона с 3 нейронами на каждом слое и 2К для двухслойного персептрона с 5 нейронами на каждом слое.

Таблица 5

Почва

Данные полученные экспериментальным путем

Данные полученные сетодом нейронных сетей

Вл-ть

Гл-на

КДП

Яр.Т. f=6,0

Яр.Т. f=2,73

Яр.Т. f=8,15

Яр.Т. f=6,0

Яр.Т. f=2,73

Яр.Т. f=8,15

Глина

0,45714

1,00

29,614

-

142

153

150

139

155

0,41086

2,00

25,218

-

145

153

151

148

154

0,398

3,00

24,059

-

145

153

152

147

151

0,19886

1,00

9,590

151

142

160

154

140

158

0,29657

1,00

15,873

176

160

178

178

162

180

0,17143

2,00

8,109

181

169

182

179

168

181

0,27314

3,00

14,223

179

152

174

181

150

176

0,26757

1,00

13,844

196

174

199

195

174

200

0,222

2,00

10,936

190

175

196

188

177

199

0,31871

3,00

17,515

187

194

203

187

195

205

0,29629

1,00

15,852

179

-

212

181

198

210

Песок

0,32057

1,00

17,656

-

199

225

194

201

227

0,27286

2,00

14,204

-

202

226

193

200

224

0,31829

3,00

17,483

-

207

224

199

209

224

0,24457

1,00

12,333

214

210

231

212

208

233

0,08486

2,00

4,249

220

223

235

222

221

234

0,17657

1,00

8,377

214

210

231

212

212

229

0,17371

2,00

8,228

220

223

235

220

222

235

0,19

3,00

9,098

216

203

219

218

201

221

0,09714

1,00

4,721

230

216

240

234

216

241

0,12057

2,00

5,692

224

221

240

228

223

243

0,11571

3,00

5,483

208

239

245

205

240

247

0,39314

1,00

23,628

204

-

241

204

216

243

В обученную нейронную сеть двухслойный персептрон при решении обратной задачи (получение параметров почв при заданной яркостной температуре с трех радиометров) вводим входные данные: экспериментально полученные яркостную температуру с трех радиометров разной частоты.

Получаем на выходе из нейронной сети данные об объемной влажности почв определенные с точностью 0,03 для двухслойного персептрона с 3 нейронами на каждом слое и 0,02 для двухслойного персептрона с 5 нейронами на каждом слое.

Таблица 6

Почва

Данные полученные экспериментальным путем

Данные полученные сетодом нейронных сетей

Вл-ть

Гл-на

КДП

Яр.Т. f=6,0

Яр.Т. f=2,73

Яр.Т. f=8,15

Вл-ть

Гл-на

КДП

Глина

0,45714

1,00

29,614

-

142

153

0,767

4,500

26,614

0,41086

2,00

25,218

-

145

153

0,201

2,250

18,218

0,398

3,00

24,059

-

145

153

0,968

2,500

6,059

0,19886

1,00

9,590

151

142

160

0,229

0,500

7,590

0,29657

1,00

15,873

176

160

178

0,317

1,500

17,873

0,17143

2,00

8,109

181

169

182

0,151

1,750

7,109

0,27314

3,00

14,223

179

152

174

0,293

3,500

12,223

0,26757

1,00

13,844

196

174

199

0,258

1,250

13,844

0,222

2,00

10,936

190

175

196

0,202

2,750

12,936

0,31871

3,00

17,515

187

194

203

0,319

3,500

18,515

0,29629

1,00

15,852

179

-

212

0,516

2,500

28,852

Песок

0,32057

1,00

17,656

-

199

225

0,831

0,500

19,656

0,27286

2,00

14,204

-

202

226

0,503

4,500

12,204

0,31829

3,00

17,483

-

207

224

0,038

3,000

19,483

0,24457

1,00

12,333

214

210

231

0,225

1,500

10,333

0,08486

2,00

4,249

220

223

235

0,105

1,750

2,249

0,17657

1,00

8,377

214

210

231

0,157

0,500

10,377

0,17371

2,00

8,228

220

223

235

0,174

2,000

7,228

0,19

3,00

9,098

216

203

219

0,210

3,500

7,098

0,09714

1,00

4,721

230

216

240

0,107

1,250

4,721

0,12057

2,00

5,692

224

221

240

0,131

2,750

7,692

0,11571

3,00

5,483

208

239

245

0,086

3,500

6,483

0,39314

1,00

23,628

204

-

241

0,793

3,250

15,628

    1. Полученные результаты

В процессе обучения ИНС формирует некоторое скрытое, неявное знание о способе решения поставленной задачи, которое заложено в виде значений весов ее адаптивных параметров. Если требуется лишь получение результата, удовлетворяющего требованиям поставленной задачи, сама ИНС и является конечным решением задачи.

Таблица 7. Погрешность определения данных методом нейронных сетей различных моделей

Погрешность в получении результатов

НС, созданная методом автоматического подбора параметров

Двухслойный персептрон

С тремя нейронами на каждом слое

С пятью нейронами на каждом слое

Яркостной температуры

5

3

2

Влажность почв

0,04

0,03

0,02

Таблица 8. Скорость обучения нейронных сетей различных моделей

Модель ИНС

НС, созданная методом автоматического подбора параметров

Двухслойный персептрон

Обучение методом обратного распространения ошибки

Обучение методом сопряженного градиента

Скорость обучения ИНС

150 эпох

3500 эпох

25 эпох

Из приведенных выше таблиц видно что наиболее оптимальной моделью точной моделью для решения данной задачи является двухслойный персептрон с 5 нейронами на каждом слое, а оптимальным методом обучения является метод сопряженного градиента.

Из полученных данных наиболее достоверными считаются результаты, определенные с точностью 2К для Tя и 0.02 для W и Wsl. Обученная ИНС, показывающая наилучшие результаты на тестовой выборке и имеющая необходимый набор служебных процедур для работы с измеряемыми данными и выводом искомых параметров, является в итоге рабочим нейросетевым решателем[15].

Полученная погрешность объясняется следующими допущениями:

  • Недостаточный объем данных в режиме обучения

  • Трехканальность входных и выходных данных

  • Неучет шероховатости поверхности

  • Неучет динамики температуры внешней среды

  • Пренебрежение шумом растительности

  • Пренебрежение техногенным шумом

Выводы

Построены нейронные сети для определения параметров почв с погрешностью в 14–19% и классификации почв на основе разработанного нейросетевого способа определения неоднородности распределения влаги в приповерхностном слое почвы по данным многоканальных измерений в СВЧ-диапазоне [15].

Наиболее удачной в решении как прямой так и обратной задачей можно считать двухслойный персептрон с 5 нейронами на каждом слое (дальнейшее увеличение количества нейронов приводит к ухудшению результатов из-за большого количества связей и малого объёма входных данных в режиме обучения).

Разработанные нейронные сети могут использоваться при определении параметров почв в приповерхностном слое (5 см) при трехканальном радиометрическом зондировании земли, а также классификация типа почв идентичных в оптическом диапазоне.

В настоящее время перспективы дальнейшего развития данных методик обработки данных радиометрического зондирования не вызывает сомнения. Сейчас уже работают комплексы нейронных сетей по определению: влажности, температуры почв.

Серия работ Л.Е. Назарова посвящена вопросам нейросетевой классификации земных объектов (лесов, водоемов).

Разработана методика нейросетевого определения участков лесного пожара по данным RADARSAT-1.

Список литературы

  1. Под ред. акад. РАН В.А. Садовничьего. Космическое землеведение. – М.: Изд-во МГУ, 1992. – Ч. 1. – 269 с.; 1998. – 4.2. – 571 с.

  2. Башаринов А.Е., Гурвич А.С., Егоров СТ. Радиоизлучение Земли как планеты. – М.: Наука, 1974. – 207 с.

  3. Шутпко A.M. СВЧ-радиометрия водной поверхности и почвогрунтов. – М.: Наука, 1986. – 190 с.

  4. Арманд Н.А., Крапивин В.Ф., Мкртчян Ф.А. Методы обработки данных радиофизического исследования окружающей среды. – М.: Наука, 1987. – 270 с.

  5. Шанда Э. Физические основы дистанционного зондирования: Пер. с англ. – М.: Недра, 1990. – 208 с.

  6. Кондратьев К.Я. Ключевые проблемы глобальной экологии // Теоретические и общие вопросы географии. – М.: ВИНИТИ, 1990. – 454 с. – (Итоги науки и техники; Т. 9.)

  7. Аэрокосмические методы в почвоведении и их использование в сельском хозяйстве. – М.: Наука, 1990. – 247 с.

  8. Сост. М. Назиров, А.П. Пичугин, Ю.Г. Спиридонов. Под ред. Л.М. Митника, СВ. Викторова. Радиолокация поверхности Земли из космоса. – Л.: Гидрометеоиздат, 1990. – 200 с.

  9. Баранов Д.В., Бобров П.П. Моделирование и экспериментальное исследование собственного радиотеплового излучения влажных почв. // Дипломная работа на соискание степени бакалавра радиофизики – Омск – 2006 – 30 с.

  10. Караваев Д.М., Щукин Г.Г. СВЧ-радиометрические исследования влагозапаса атмосферы и водозапаса облаков. Тезисы докладов региональной XXIII конференции по распространению радиоволн. С-Петербург, 1997, с. 76.

  11. «Потенциальные возможности бистатического радиометра для наблюдения поверхности Земли с высоким разрешением» // А.П. Верещак, В.В. Пискорж. – Журнал Радиоэлектроники – 2003 – №3

  12. Баррет Э., Куртис Л. «Введение в космическое землеведение.» – пер. с англ. – М – Прогресс – 1979 г.

  13. «Наблюдение океана из космоса при помощи микроволновых радиометров» Ю.А. Кравцов // Соросовский Образовательный Журнал – 1999 – (44)№7.

  14. Медведев В.С., Потемкин В.Г. «Нейронные сети MatLab 6» М – ДиалогМИФИ – 2002 г.

  15. Мансуров А.В. дисс. канд. ф.-м.н. «Алгоритмы обработки данных радиоволнового дистанционного зондирования поверхности Земли на основе искусственных нейронных сетей», Алтайский Государственный Университет, Барнаул – 2006

Размещено на Allbest.ru

Характеристики

Тип файла
Документ
Размер
14,36 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6529
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее