151799 (621951), страница 3

Файл №621951 151799 (Загальна характеристика напівпровідникових матеріалів) 3 страница151799 (621951) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Матеріал типу GaхAsSeу — склоподібний напівпровідник, властивості якого визначаються кількісною сполукою вхідних у нього елементів. Властивості арсенідо - селенідних стекол змінюються при введенні в них галію до 3 ат. %. При введенні галію в більших кількостях зменшується швидкість розчинення й електропровідність напівпровідникового матеріалу [5].

Матеріал типу TlхAsSу— склоподібний напівпровідник, що може містити в собі до 30 ат. % талія. Термічна стійкість і мікротвердість матеріалу помітно зменшуються в міру збільшення кількості вмісту в його сполуку талія.

Матеріал типу AsSeхTeу — склоподібний напівпровідник, що містить у собі до 40 ат.% телуру. При збільшенні змісту телуру відбувається зниження температури розм'якшення матеріалу з 400 до 100° С.

Матеріал типу AsSeхIу— склоподібний напівпровідник, що включає, у себе до 15 ат. % йода. Температура розм'якшення матеріалу залежно від його сполуки може змінюватися від 20 до 160° С. Найбільш стійка сполука As2Se3—Asl3.

1.7 Органічні напівпровідники

Органічні напівпровідникові матеріали відрізняються від інших напівпровідників як по властивостях, так і методам одержання .і можливим областям застосування. До найбільш вивчених органічних напівпровідникових матеріалів ставляться антрацен, нафталін, фталоціанін, пірин, тефеніл і ін., ширина забороненої зони яких коливається від 0,6 до 3,7 еВ, а питомий опір — від 10б до 1015 Ом-см.

Напівпровідникові властивості в органічних сполук (антрацену) були відкриті в 1906 р. Спочатку була виявлена фотопровідність барвників. Далі було знайдено, що провідність інших органічних сполук (фталоціанінові) змінюється з підвищенням температури, як і в неорганічних напівпровідників. У цей час антрацен знаходить широке застосування як напівпровідниковий матеріал як кристалічні лічильники в ядерній фізиці.

Поряд із зазначеними органічними напівпровідниковими матеріалами відоме широке коло хімічних сполук, у яких електропровідність здійснюється електронами або дірками. Питомий опір цих сполук лежить у межах від 10 до 1016 Ом-см, тобто в інтервалі електропровідності звичайних елементарних напівпровідників і ізоляторів. З ростом температури Їхня електропровідність також зростає; у деяких з них проявляється ефект Холу й фотоефект [6].

Разом з тим органічні напівпровідники багато в чому відрізняються від звичайних напівпровідників (германія, кремнію). Так, рухливість носіїв заряду в. їх на кілька порядків нижче, ніж у германія. Добре вираженої примісної провідності при низьких температурах у багатьох органічних напівпровідників не виявляється. Органічні напівпровідники становлять значний інтерес, тому що напівпровідникові властивості в них сполучаються з еластичністю, здатністю до утворення плівок і волокон, міцністю й ін.

Для твердих органічних напівпровідникових матеріалів характерна наявність у їхній структурі ароматичних кілець зі сполученими зв'язками. Типовим представником матеріалів з такою будовою є антрацен, що містить три бензольних кільця. Процес Провідності органічних напівпровідників визначається рухом носіїв зарядів усередині молекули речовини і їхніх переходів від молекули до молекули.

Домішки в органічних напівпровідниках у порівнянні з елементарними напівпровідниками відіграють другорядну роль. При введенні в органічних напівпровідників у якості домішки кисню може відбуватися як збільшення, так і зменшення електропровідності вихідного матеріалу, що обумовлено особливостями будови його молекул. Крім того, органічні напівпровідники мають внутрішній і зовнішній фотоефект. Фотопровідність органічних напівпровідників зростає зі збільшенням освітленості й температури й має певну спектральну характеристику.

Всі органічні тверді напівпровідникові матеріали можна розділити на п'ять груп: молекулярні кристали, молекулярні комплекси, металоорганічні комплекси, полімерні напівпровідники й пігменти.

Молекулярні кристали - поліциклічні низькомолекулярні ароматичні сполуки, відмінними рисами яких є їх кристалічністю і наявність ароматичних кілець із системою сполучених подвійних зв'язків. До таких матеріалів ставляться антрацен С14Н10, нафталін С10Н8, фенатрен, перилен, коронен, віолантрен і фталоціаніни. Серед речовин цього класу багато з них володіє дірковою провідністю й .характеризуються енергією активації порядку 1—3 еВ, низькою рухливістю носіїв заряду і питомим опором.

Молекулярні комплекси — поліциклічні низькомолекулярні сполуки, що характеризуються електронною взаємодією між молекулами речовини. Молекулярні комплекси володіють, як правило, значно більшою електропровідністю, чим молекулярні кристали, і являють собою сполуки донорно-акцепторного типу. Одна молекула такої речовини здатна приєднувати електрон, а друга - його віддавати. Тому такі сполуки називають також комплексами з передачею заряду. При передачі заряду виникає іонний зв'язок між молекулами [7].

Металоорганічні комплекси — низькомолекулярні речовини, молекула яких містить у центрі атом металу. Прикладом таких речовин може служити фталоціанін міді. Такі матеріали мають енергію активації носіїв заряду більше

1 еВ і відрізняються щодо високою рухливістю носіїв зарядів, що досягає 10 см2/с. Основними носіями є дірки.

Полімерні напівпровідники — матеріали, відмінними рисами яких у порівнянні з низькомолекулярними є довгі ланцюги сполучення в макромолекулах і більше складна фізико-хімічна будова. З подовженням ланцюгового сполучення підвищується електропровідність і знижується енергія активації.

Пігменти - барвники, що володіють напівпровідниковими властивостями. Прикладом можуть служити індиго, еозин, пінаціонол, радофлавін, радамін, тріпафлавін і ін. Є також природні пігменти: хлорофіл, каротин і ін. Серед пігментів зустрічаються як електронні, так і діркові напівпровідники: катіонні пігменти мають провідність n-типу, аніонні - р-типа. Для пігментів характерна висока енергія забороненої зони й низька електропровідність.

Основним критерієм використання органічних напівпровідникових матеріалів є їхня чистота. Тому питання очищення цих матеріалів від домішок дуже важливий. Звичайно для очищення органічних речовин використають чотири методи: кристалізацію з розчину, сублімацію, хроматографію з розчину або пари й зонне очищення. Як вихідні матеріали, використовуваних для виготовлення різних приладів, застосовують як монокристалічні, так і полікристалічні зразки органічних напівпровідників.

Органічні напівпровідники знаходять застосування в окремих областях електроніки й радіотехніки. Так, їх використають при виготовленні терморезисторів з високою температурною стабільністю п'єзоелементів, резонансних контурів в інтегральних схемах, радіаційних дозиметрів, детекторів інфрачервоного випромінювання, фоторезисторів, квантових генераторів, й іншими приладами. До переваг різних типів приладів і інтегральних схем, виготовлених на основі органічних напівпровідникових матеріалів, ставляться висока механічна й кліматична стійкість в умовах тропічного клімату й при підвищених вібраційних і ударних навантаженнях.

У цей час ведуться роботи з одержання нових видів органічних напівпровідникових матеріалів і дослідженню їх електрофізичні властивостей. Відкриття раніше невідомих властивостей цих матеріалів дозволить ще ширше використати їх у народному господарстві.

2. ЗАСТОСУВАННЯ НАПІВПРОВІДНИКОВИХ МАТЕРІАЛІВ ТА ВИМОГИ ДО НИХ

Більшість приладів виготовляють із напівпровідникових пластин або кристалів, вирізаних з монокристалічних злитків. Монокристалічні злитки круглого перетину одержують методом спрямованої кристалізації розплавів. Останнім часом широке застосування знаходять також монокристалічні епітаксійні плівки.

Легуючі домішки повинні бути розподілені рівномірно але всьому об'єму монокристалічного злитка, що забезпечує однакові параметри всієї партії приладів, виготовлених з одного злитка напівпровідникового матеріалу, і дозволяє налагодити масовий випуск однотипних приладів.

Більшість напівпровідникових матеріалів, такі, як германій, кремній, карбід кремнію й ін., мають високу стійкість до впливу навколишнього середовища. Однак деякі напівпровідникові сполуки типу А111—Bv (антимонід, арсенід і фосфід алюмінію) не стійки у вологій атмосфері, тобто вони гідролізуються, що є серйозною перешкодою для їхнього масового застосування.

Вимоги до температуростійкості диктуються максимальними й мінімальними робочими температурами експлуатації напівпровідникових діодів, транзисторів і інтегральних схем. Верхня межа робітників, температур напівпровідникових матеріалів залежить від ширини їхньої забороненої зони. Нижня межа робочих температур напівпровідникових матеріалів визначається енергією іонізації легуючих домішок.

Верхня межа робочої частоти напівпровідникових діодів, транзисторів і інтегральних схем визначається рухливістю електронів і дірок, а також діелектричною проникністю матеріалів, з яких вони виконані. Для напівпровідникового матеріалу певного типу провідності, рухливість має максимальне значення в некомпенсованому матеріалі. Тому матеріал, застосовуваний для виготовлення приладів, повинен мати яскраво вираженими електронними або дірковими властивості.

Більшість напівпровідникових приладів, за винятком імпульсних, виготовляють із матеріалу з досить більшим часом життя неосновних носіїв зарядів, а імпульсні напівпровідникові діоди - з матеріалу з малим часом життя неосновних носіїв зарядів. Для приладів, що використають ефект Холу, найкраще підходять напівпровідникові матеріали з високою рухливістю й малою концентрацією носіїв заряду, що забезпечують велику холівську напругу. Для виготовлення магнітоелектричних приладів використають арсенід індію й телурид ртуті.

Термоелектричні прилади виготовляють із напівпровідникових матеріалів, що забезпечують максимальний коефіцієнт ефективності, тобто які мають високу і низьку теплопровідність. Такими властивостями володіють антимонід цинку телурид і селенід вісмуту [7].

При виборі матеріалів для фотоприладів керуються в першу чергу спектральною чутливістю напівпровідникового матеріалу. Зменшують інерційність фотоприладів застосуванням матеріалів з малим часом життя неосновних носіїв заряду. При виготовленні фотоперетворювачів (сонячних батарей) особливе значення має ширина забороненої зони, що визначає ефективність роботи цих приладів.

Напівпровідникові матеріали для лазерів повинні мати зроблену структуру, тому що сторонні домішки й дефекти приводять до появи усередині забороненої зони проміжних енергетичних рівнів. Крім того, ці матеріали повинні мати високу рухливість носіїв заряду при даній їхній концентрації.

Люмінесцентні діоди виготовляють із напівпровідників, що володіють здатністю до випромінювальної рекомбінації: арсенідів і фосфідів індію й галію, карбіду кремнію, сульфіду цинку й ін. Основний параметр цих приладів - довжина хвилі випромінювання залежить від властивостей вихідного, напівпровідникового матеріалу й, зокрема, від ширини забороненої зони.

3. ЕЛЕКТРОФІЗИЧНІ ВЛАСТИВОСТІ

3.1 Зонна структура напівпровідникових сплавів

На зонній діаграмі бінарної системи Ge-xSi-x в області Ge0.85-Si0.15 виявляється злам. Це було виявлено ще в 1954 році [4], але отримало пояснення пізніше, з розвитком математичного апарату фізики твердого тіла.

Ширина забороненої зони в германії визначається енергетичною щілиною в забороненій зоні між мінімумом у краю зони провідності в напрямі [111] і максимумом валентної зони в крапці [000]. При додаванні кремнію в германій щілина, що визначає ширину забороненої зони, збільшується практично лінійно. Швидкість підйому мінімумів, лежачих в напрямі [111], більше, ніж швидкість пониження мінімумів, лежачих в напрямі [100].

При 15% Si в розчині обидва типи мінімумів (уподовж [100] в кремнії і уподовж [111] (у германії) однаково віддалені від максимуму валентної зони в крапці [000]. Таким чином, в розчинах при концентрації кремнію нижче 15% ширина забороненої зони сплаву визначається мінімумом, лежачим в напрямі [111], а вище за це значення концентрацій - в напрямі [100] [3].

З цього виходить, що при виготовленні електронних приладів бажано уникати використання сплавів складу Si0.15Ge0.85, оскільки мабуть поява в матеріалі (в результаті обробки і пов'язаних з нею процесів) острівців з параметрами, що відрізняються від параметрів решти об'єму матеріалу. Особливо це може бути помітно при створенні елементів на пластинах, вирощених методом Чохральського, як буде показано нижче.

3.2 Методи виробництва кремній германієвих сплавів

Виробництво Si1-xGex сплавів і структур можливо різними методами, такими як кристалізація з розплавів, метод БЗП (бестигельной зонної плавки), жидкофазная эпитаксия і ін. Технології виробництва, як правило, не освітлюють у пресі, але із статей можна прослідкувати основні джерела матеріалів.

Наприклад:

- монокристали Si1-xGex p-типа провідності вирощувалися в інституті зростання кристалів (Берлін, Німеччина) методом Чохральського [4];

Характеристики

Тип файла
Документ
Размер
2,39 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6529
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее