151582 (621807), страница 2
Текст из файла (страница 2)
Определим реактивную мощность, потребляемую в узлах из системы с учетом компенсирующих устройств:
,(11)
где Qk,i – мощность конденсаторных батарей, которые должны быть установлены на каждой подстанции, Мвар.
Полная мощность в узлах с учетом компенсирующих устройств:
,(12)
где Qi – реактивная мощность, потребляемая в узлах из системы с учетом компенсирующих устройств, Мвар.
5. Выбор силовых трансформаторов понизительных подстанций
Количество трансформаторов выбирается с учетом категорий потребителей по степени надежности. Так как по условию курсового проекта, на всех подстанциях имеются потребители 1-ой категории и , то число устанавливаемых трансформаторов должно быть не менее двух.
В соответствии с существующей практикой проектирования мощность трансформаторов на понижающих подстанциях рекомендуется выбирать из условия допустимой перегрузки в послеаварийных режимах до 30% в течение 2 часов. По [3, табл. 5.18] выбираем соответствующие типы трансформатора. Полная мощность ПС № 1 , поэтому на ПС № 1 необходимо установить два трансформатора мощностью
.
Результаты выбора трансформаторов приведены в таблице 2.
Таблица 2
№ узла | Полная мощность в узле, МВ·А | Тип трансформатора |
1 | 17,7 | |
2 | 24 | |
3 | 31,7 | |
4 | 28,1 | |
5 | 20,8 | |
Данные трехфазных двухобмоточных трансформаторов 110 кВ приведены в таблице 6.9 [1]. Запишем данные наших трансформаторов в таблицу 3.
Таблица 3
|
| |
| 16 | 25 |
Пределы регулирования | | |
| 115 | 115 |
| 10,5 | 10,5 |
| 10,5 | 10,5 |
| 85 | 120 |
| 19 | 27 |
| 0,7 | 0,7 |
| 4,38 | 2,54 |
| 86,7 | 55,9 |
| 112 | 175 |
6. Выбор сечения проводников воздушных линий электропередач
Существует несколько способов для выбора сечения проводников воздушных линий электропередач:
По условиям экономичности
По допустимым потерям напряжения
По условиям нагрева
Определим распределение полной мощности (без учета потерь в линиях) в проектируемой сети.
Схема 1
Рассмотрим линию с двухсторонним питанием (А-1-2-А)
По первому закону Кирхгофа определим переток мощности :
Рассмотрим двухцепные линии
Схема 2.
Рассмотрим линию с двухсторонним питанием (А-5-4-А)
По первому закону Кирхгофа определим переток мощности :
Рассмотрим двухцепные линии
Расчетную токовую нагрузку линии определим по выражению:
,(13)
где αi – коэффициент, учитывающий изменение нагрузки по годам эксплуатации лини, для линий 110 – 220кВ принимается равным 1,05, что соответствует математическому ожиданию этого коэффициента в зоне наиболее часто встречающихся темпов роста нагрузки;
- коэффициент, учитывающий число часов использования максимальной нагрузки линии Тмахс. Выбирается по [ табл. 3.табл.3,13].
;
Iнб – ток линии на пятый год ее эксплуатации в нормальном режиме, определяемый для линии питающей и распределительной сети из расчета режима соответствующего максимальной нагрузки энергосистемы.
В нормальном режиме работы сети наибольший ток в одноцепной линии равен :
(14)
В двухцепной линии:
(15)
Схема 2.
Тогда расчетная токовая нагрузка линии А – 1 в нормальном режиме:
В линии А – 3:
В линии A – 2:
В линии А – 4:
В линии А – 5:
В линии 5 – 4:
Исходя из напряжения, расчетной токовой нагрузки, района по гололеду, материала опор и количества цепей в линии по [табл. 7.8, 1] выбираются сечения сталеалюминевых проводов. Для линии 110кВ наименьшее сечение сталеалюминевого провода равно 120 мм2. Использование проводов сечением 70 мм2 и 95 мм2 согласно [ табл. 9.5, 1] экономически не выгодно и не целесообразно. Так для линии А – 1 выбираем АС – 120;
Для А – 2: АС – 120
Для А – 3: АС – 120
Для А – 4: АС – 120
Для А – 5: АС – 120
Для 4 – 5: АС – 120
Проверка выбранных сечений по допустимому нагреву осуществляется по формуле: (16) где
- наибольший ток в послеаварийном режиме, А;
- допустимый ток по нагреву, А [3, табл. 3.15].
Превышение температуры проводника над температурой окружающей среды зависит от количества выделяемого в нем тепла, следовательно от квадрата длительного прохождения по нему тока, а также от условий его охлаждения. Работа проводов и кабелей по условиям их нагрева считается допустимой, если при заданной величине тока температура проводника не превышает допустимого значения. Ток допустимый из формулы (16) зависит от удельной электрической проводимости материала и диаметра проводника. В практических расчетах сетей обычно пользуются годовыми таблицами длительно допустимых токов нагрузки на провода и кабели из различных материалов и при различных условиях прокладки. Таким образом, условие проверки выбранного сечения по нагреву записывается в виде формулы (16).
Наибольшая токовая нагрузка в послеаварийном режиме будет иметь место при отключении одной цепи линии.
Аварийные токи:
По [3, табл. 3.15].определяем допустимые токи по нагреву и все полученные результаты запишем в таблицу 4.
Таблица 4
Линия | А – 1 | А – 2 | A – 3 | А – 4 | А-5 | 4-5 |
| 48,7 | 66,1 | 87,3 | 86,2 | 48,2 | 8,81 |
F= | 54,1 | 73,4 | 97 | 95,7 | 53,5 | 9,78 |
| 97,5 | 132,26 | 179,7 | 269,49 | 269,49 | 114,6 |
| 390 | 390 | 390 | 390 | 390 | 390 |
Марка провода | АС 120/19 | АС 120/19 | АС 120/19 | АС 120/19 | АС 120/19 | АС 120/19 |
При сравнении наибольшего тока в послеаварийном режиме с длительно допустимым током по нагреву выполняется неравенства (17) и, следовательно, выбранные провода удовлетворяют условию допустимого нагрева в послеаварийном режиме.
Схема1
Рассмотрим линию с двухсторонним питанием (А-1-2-А)
По первому закону Кирхгофа определим переток мощности :
Рассмотрим двухцепные линии
В нормальном режиме работы сети наибольший ток в одноцепной линии равен:
(14)
В двухцепной линии:
(15)
Тогда расчетная токовая нагрузка линии А – 3 в нормальном режиме:
В линии А – 5:
В линии А – 4:
В линии А – 1:
В линии А – 2:
Исходя из напряжения, расчетной токовой нагрузки, района по гололеду, материала опор и количества цепей в линии по [табл. 7.8, 1] выбираются сечения сталеалюминевых проводов. Для линии 110кВ наименьшее сечение сталеалюминевого провода равно 120 мм2. Использование проводов сечением 70 мм2 и 95 мм2 согласно [ табл. 9.5, 1] экономически не выгодно и не целесообразно. Так для линии А – 1 выбираем АС – 120;
Для А – 2: АС – 120;
Для 2 – 1: АС – 120;
Для А – 3: АС – 120;