151080 (621563)

Файл №621563 151080 (Фізика відкритих систем. Синергетика)151080 (621563)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Розділ 1. Поняття відкритих систем, дисипативні структури. 3

Розділ 2. Фізичний та динамічний хаос. 5

Розділ 4. Фрактальні структури й розмірність дивних атракторів 17

Розділ 5. Застосування понять фізики відкритих систем до моделювання обробки інформації. 25

Висновок 30

Список використаної літератури. 31

Вступ

Метою даної роботи є розгляд питання, чим являється у наш час фізика відкритих систем? Під час навчання нам довелося вивчити курс загальної фізики і у ньому не було згадки про фізику відкритих систем. То ж чи являється фізика відкритих систем окремим предметом і які питання вона вивчає?

Фізика відкритих систем – міждисциплінарний науковий напрям. Для його характеристики можна привести короткий перелік ключових слів і понять: хаос і порядок; відкриті системи; критерії відносного ступеня впорядкованості станів відкритих систем; норма хаотичності; деградація й самоорганізація; діагностика відкритих систем; конструктивна роль динамічної нестійкості руху атомів; перехід від оборотних рівнянь до необоротних. Кінетичний і гідродинамічний опис нерівноважних процесів з урахуванням структури "суцільного середовища"; опис на цій основі рівноважних і нерівноважних фазових переходів; єдиний кінетичний опис ламінарних і турбулентних рухів; квантові відкриті системи. Багато із цих понять не є новими. Однак, метою фізики відкритих систем є розвиток ідей і методів єдиного опису цього широкого кола питань.

Фізика відкритих систем почала свій розвиток лише нещодавно, із середини ХХ століття, коли вчені побачили, що за допомогою тих чи інших математичних моделей можна описати досить складні процеси у відкритих системах, зокрема рухи повітряних мас та шарів води, які отримали своє застосування у гідро- та аеродинаміці, коливні процеси. Останнім часом фізика відкритих систем почала вивчати також і процеси обміну інформацією, адже процеси навчання, передачі та обробки інформації також можна віднести до галузі застосування фізики відкритих систем.


Розділ 1. Поняття відкритих систем, дисипативні структури.

Розглянемо питання, що ж являють собою відкриті системи? Відкриті системи можуть обмінюватися з навколишніми тілами енергією, речовиною й, що не менш важливо, інформацією. Процес обміну енергії чи маси носить назву дисипації. Розглянемо лише макроскопічні відкриті системи. Вони складаються з багатьох об'єктів, які приймемо за елементи структури. Ці елементи можуть бути мікроскопічними, наприклад атоми або молекули у фізичних і хімічних системах. Ці елементи також можуть бути відносно малими, але все-таки макроскопічними. Це, наприклад, макромолекули в полімерах, клітини в біологічних структурах.

Завдяки складності відкритих систем у них можливе утворення різного роду структур. Дисипація енергії відіграє при утворенні таких структур конструктивну роль. Це здається, на перший погляд, дивним, так як поняття дисипації асоціюється із згасанням різного роду рухів, з розсіюванням енергії, із втратою інформації. Однак, і це надзвичайно істотно, дисипація необхідна для утворення структур у відкритих системах. Щоб підкреслити це, Ілля Пригожин ввів термін " дисипативні структури" (7, ст. 56). Це надзвичайно ємка й точна назва поєднує всі види структур: тимчасові, просторові й, нарешті, найбільш загальні просторово-тимчасові структури. Прикладом останніх можуть бути автохвилі.

Складність відкритих систем визначає широкі можливості для існування в них кооперованих явищ. З метою підкреслити роль об’єднання при утворенні дисипативних структур Герман Хакен ввів термін синергетика, що означає – спільна дія. Мета синергетики – виявлення загальних ідей, загальних методів і загальних закономірностей у самих різноманітних областях природознавства, а також соціології й навіть лінгвістики. Більше того, у рамках синергетики відбувається кооперування різних спеціальних дисциплін. Синергетика народилася на базі термодинаміки й статистичної фізики. Тому необхідно підкреслити, що в основі теорії відкритих систем лежать фундаментальні фізичні закони.


Розділ 2. Фізичний та динамічний хаос.

Хаос і порядок – поняття, які відігравали істотну роль уже у світогляді філософів древності, зокрема, представників школи Платона. Не вдаючись у деталі, відзначимо лише два сформульованих ними положення, які зберігають своє значення й донині.

По уявленнях Платона і його учнів хаос – стан матерії, що залишається в міру усунення можливостей прояву її властивостей. З іншого боку, з хаосу виникає все, що становить зміст світобудови, тобто з хаосу може народжуватися порядок .

В фізиці поняття "хаос" й "хаотичний рух" є фундаментальними, але все-таки недостатньо чітко визначеними. Дійсно, згідно Больцмана, найбільш хаотичним є рух у стані рівноваги. Однак, хаотичними називають і рухи, далекі від рівноважного. Це, наприклад, рух у генераторах шуму, призначених для придушення сигналів.

Хаотичним називають, як правило, і різного роду турбулентні рухи в газах і рідинах. Прикладом може бути турбулентний рух рідини у трубах. Він виникає із ламінарного руху при досить великому перепаді тиску на кінцях труби. При цьому уявлення про турбулентний рух як більш хаотичний, ніж ламінарний, здається зрозумілим. Однак, такий висновок базується на змішуванні понять складності й хаотичності. При спостереженні турбулентного руху проявляється саме складність руху. Питання ж про ступінь хаотичності вимагає додаткового аналізу й для кількісних оцінок необхідні відповідні критерії.

В останні роки стало широко використовуватися поняття "динамічний хаос" для характеристики складних рухів у порівняно простих динамічних системах. Слово "динамічний" означає, що відсутні джерела флуктуації – джерела безладдя.

Із цієї причини поняття "динамічна система" ідеалізоване. Більш реальний хаотичний рух з врахуванням і випадкових джерел руху можна назвати "фізичним хаосом". Його прикладом і є хаотичний рух атомів і молекул у стані рівноваги.

Математичне поняття "динамічний хаос" простежується в роботах А. Пуанкаре й А.Н. Колмогорова.

Одне з фундаментальних понять, з якими доведеться мати справу – це поняття динамічної системи.

Про динамічну систему говорять у тому випадку, якщо можна вказати такий набір величин, які називають динамічними змінними системи, що характеризують стан, і їхні значення в будь-який наступний момент часу випливають із вихідного набору за певним правилом. Це правило задає оператор еволюції системи. Якщо стан системи задається набором N величин, то зміна стану в часі, чи динаміки системи, можна представити як рух точки по траєкторії в N-мірному фазовому просторі, що називають фазовою траєкторією.

Колись у поняття динамічної системи вкладали чисто механічний зміст, маючи на увазі набір тіл, зв'язаних силовими взаємодіями, які підкоряються системі диференціальних рівнянь, що випливають із законів Ньютона. По мірі розвитку науки поняття динамічної системи розширювалось, охоплюючи об'єкти різної природи. Сучасне поняття динамічної системи це результат тривалої еволюції наукових уявлень і синтезу досягнень багатьох дисциплін. Воно має на увазі можливість задання оператора еволюції будь-яким способом, не обов'язково диференціальним рівнянням. Зокрема, останнім часом й у теоретичних дослідженнях, і в роботах прикладного характеру дуже часто розглядають системи з дискретним часом, які описуються рекурентними відображеннями. У цьому випадку під фазовою траєкторією слід розуміти деяку дискретну послідовність точок у фазовому просторі.

Виділяють два класи динамічних систем – консервативні й дисипативні.

У фізиці під властивістю консервативності розуміється збереження енергії. Зокрема, механічні коливальні системи під час відсутності тертя відносяться до консервативних систем. У присутності тертя механічна енергія не зберігається, а поступово розсіюється (дисипує) і переходить у тепло, тобто в енергію мікроскопічного руху молекул, що становлять систему і її оточення. У цьому випадку тимчасова еволюція повинна визначатися не тільки станом самої системи, але й оточенням. І у цій ситуації опис у рамках концепції динамічних систем, заданих, наприклад, диференціальними рівняннями, дуже часто виявляється вірним і досить точним. Це буде вже дисипативна динамічна система. Ми хотіли б, однак, асоціювати консервативність і дисипативність із вихідними поняттями теорії динамічних систем.

Нехай ми маємо деяку динамічну систему, тобто задане фазовий простір і зазначений оператор еволюції. Замість однієї системи розглянемо ансамбль, що складається з великої кількості її ідентичних копій, причому всі представники ансамблю можуть відрізнятися один від одного тільки лише початковими умовами. У фазовому просторі ансамбль представляється хмарою точок. Із часом кожна точка, переміщається у фазовому просторі, як записано динамічними рівняннями системи, так що форма хмари і її розміри будуть змінюватися.

Може трапитися, що об'єм хмари в процесі тимчасової еволюції буде залишатися постійним. Це характерно для консервативних систем, до яких відносяться, зокрема, розглянуті в класичній механіці гамільтонові системи.

Для гамільтонової системи розмірність фазового простору N парна; стан задається набором динамічних змінних , , (i = 1, ..., N/2), які називають узагальненими координатами й імпульсами. Кількість пар координат й імпульсів, тобто величину, удвічі меншу розмірності фазового простору, називають числом ступенів вільності. Для систем з безперервним часом динаміка задається рівняннями Гамільтона

де H ( ) - певна для кожної даної системи функція N змінних, названа гамільтоніаном. Гамільтонова система з дискретним часом (відображення) у самому загальному випадку може бути виражена неявно через одну функцію N змінних F ( ), яку називають похідною функцією:

Тут величини, відзначені штрихами, відносяться до наступного моменту дискретного часу.

Що стосується дисипативних систем, то для них характерно, що із часом хмара точок, стискається і концентрується на одному або декількох атракторах – підмножинах фазового простору, що володіють звичайно нульовим фазовим об'ємом (див. рис. 1 (б)). З погляду динаміки в часі, це означає, що режим, що виникає в системі, наданій самій собі протягом тривалого часу, стає незалежним від початкового стану (принаймні, при варіації початкових умов у деяких кінцевих границях).

Прості приклади аттракторів – стійкий стан рівноваги й стійкий граничний цикл – замкнута фазова траєкторія, до якої прямують із часом всі близькі траєкторії. Граничний цикл відповідає, як відомо, режиму періодичних автоколивань.

При наявності у фазовому просторі двох або більше атракторів говорять, що має місце, відповідно, бістабільністъ або мультистабільность. Безліч точок фазового простору, з яких траєкторії приходять врешті-решт до якогось одного атрактора, називається басейном цього атрактора.

Одним з важливих понять теорії динамічних систем являється поняття інваріантної множини. Безліч точок фазового простору називають інваріантним у тому випадку, якщо фазова траєкторія, що стартує з будь-якої його точки, цілком належить цій множині. Будь-який атрактор – це інваріантна множина, але не навпаки. Нестійкі нерухомі точки, нестійкі замкнуті орбіти – це також інваріантні множини. На відміну від атракторів, які мають місце тільки в дисипативних системах, інваріантні множини зустрічаються й у дисипативних, і в консервативних динамічних системах.

Варто чітко усвідомлювати, що поняття динамічної системи є теоретична абстракція, так само як багато інших звичних і корисних наукових абстракцій (матеріальна точка, абсолютно тверде тіло, нестислива рідина, ідеальний газ). Реальні об'єкти можуть розглядатися як динамічні системи тільки в певному наближенні, в тій мірі, у якій при описі динаміки можна ігнорувати тонкі деталі внутрішньої структури системи і її взаємодію з навколишнім світом.

Успіхи класичної механіки в ХVII-ХІХ ст. були настільки вражаючими, що почало здаватися можливим уявляти собі весь Всесвіт як одну гігантську динамічну систему. Ця доктрина, що одержала назву лапласівського детермінізму, виразила в концентрованому виді ідеал наукового пізнання, яким він бачився в ті часи. Знадобився тривалий шлях розвитку науки й наукового світогляду (теорії поля, термодинаміки й статистичної фізики, квантової механіки), щоб переконатися в неспроможності такого уявлення про світ.

Як ми тепер знаємо, ідеал лапласівського детермінізму принципово недосяжний навіть у тому випадку, якщо обмежитися рамками абстракції динамічних систем. Феномен, що яскраво демонструє цю обставину, був відкритий і став загальновідомим в останні кілька десятиліть. Це динамічний хаос. Хаотичні режими характеризуються нерегулярними, схожими на випадкові процеси, змінами динамічних змінних у часі. У дисипативних системах хаос асоціюється з наявністю у фазовому просторі дивних атракторів – складно влаштованих фрактальних множин, що притягують до себе всі траєкторії з деякої прилягаючої області (басейну атрактора).

Характеристики

Тип файла
Документ
Размер
2,51 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее