151004 (621537), страница 5
Текст из файла (страница 5)
Расход воды, м3/ч, в подающей магистрали тепловой сети может быть найден по выражению
(2.21)
где Фр.в - расчетная тепловая нагрузка, покрываемая теплоносителем водой, Вт; tп и tо - расчетные температуры прямой и обратной сетевой воды, оС; о - плотность обратной воды (при tо = 70 оС о = 977,8 кг/м3).
Расчетная тепловая нагрузка
(2.22)
где Фс.н - тепловая мощность, потребляемая котельной на собственные нужды (подогрев и деаэрация воды, отопление вспомогательных помещений и др.)
Фс.н = (0,03...0,1)(Фот+ + Фв +
Фг.в.+ Фт).
Расход в обратной магистрали Gо меньше Gп на величину потерь в тепловых сетях (1...3 % от Gп) и расхода воды на горячее водоснабжение и технологические нужды. Эти потери восполняются подпиткой тепловой сети Gпп, м3/ч, деаэрированной водой в количестве
(2.23)
где Фг.в - расчетная тепловая нагрузка горячего водоснабжения, Вт; Фт.н.в - часть расчетной тепловой нагрузки на технологические нужды, покрываемой теплоносителем - водой, Вт; tг и tх - расчетная температура горячей и холодной воды, оС; пп - плотность подпиточной воды, можно принять равной о, кг/м3.
Расход воды в обратной магистрали, м3/ч
(2.24)
2.4.2 Составление тепловой схемы котельной
Тепловая схема иллюстрирует взаимосвязь между отдельными элементами оборудования котельной и отображает тепловые процессы, связанные с трансформацией теплоносителя и исходной воды.
Принципиальная тепловая схема водогрейной котельной с отпуском теплоты в открытые тепловые сети показана на рисунке 2.2. Вода из обратной магистрали поступает во всасывающий коллектор сетевых насосов СН. Сюда же насосами ПН подается подпиточная вода в количестве Gпп.
Исходная вода для подпитки сети поступает из водопровода, проходит через подогреватель 1, фильтры химводоочистки 2, подогреватель химочищенной воды 3 и вакуумный деаэратор 4. В этом деаэраторе поддерживается вакуум 0,03 МПа за счет отсасывания из колонки деаэратора паровоздушной смеси водоструйным эжектором 5. Часть воды Gпер после сетевых насосов перепускается в обвод котлов 6 и смешивается с водой, нагретой в котлах, регулируя температуру в подающей магистрали на уровне, соответствующем температурному графику сети.
Для поддержания температуры на входе в котел tвх на уровне, исключающем выпадение конденсата из дымовых газов на хвостовых поверхностях нагрева котла, часть нагретой воды в количестве Gрец рециркуляционным насосом РН возвращается в напорный коллектор сетевых насосов.
Теплота этой воды используется также для нагрева добавочной воды в подогревателях 3 и 1.
При расчете тепловой схемы водогрейной котельной определяются температуры воды на входе и выходе из котла и в линии рециркуляции, а также расходы воды через котел, в линии перепуска и в линии рециркуляции.
Принципиальная тепловая схема водогрейной котельной с отпуском теплоты в открытые тепловые сети.
1 - подогреватель исходной воды; 2 - фильтры химводоочистки; 3 - подогреватель химочищенной воды; 4 - деаэратор; 5 - эжектор; 6 - котлы; 7 - бак аккумулятор. ЭН, ПН, РН и СН - насосы соответственно эжекторный, подпиточный, рециркуляционный и сетевой.
Порядок расчета тепловой схемы следующий [4].
1. Температуру воды перед сетевыми насосами tсм определяют из уравнения теплового баланса точки смешения A
(2.25)
где Gо - расход воды в обратной магистрали, м3/ч; Ср - теплоемкость воды, принимаемая равной 4,19 кДж/(кгоС); tпп - температура подпиточной воды, принимается равной температуре горячей воды, разбираемой потребителями непосредственно из сети, tпп = 60...70 оС; пп - плотность подпиточной воды кг/м3,; см - плотность смешанной воды, принимают см = о, кг/м3;
2. Расход воды на перепуск Gпер по линии обвода котла находят из уравнения теплового баланса при смешении потоков в точке Б
(2.26)
где tвых - проектная температура воды за котлом (берется равным 95...115 оС); вых и п - плотность воды на выходе из котла и в подающей магистрали, кг/м3.
3. Расход воды в линии рециркуляции Gрец для предварительно принятого значения tрец = 30...60 оС, перед поступлением воды в напорный коллектор сетевых насосов определяют из выражения
(2.27)
где рец и доб - плотность воды рециркулируемой (для принятого значения tрец) и добавочной (при температуре tх), кг/м3; п - КПД подогревателя (п = 0,97...0,98); Gдоб - расход добавочной воды с учетом потерь в тепловой схеме самой котельной (Gдоб = 1,05Gпп), м3/ч; tг - температура воды, подаваемой в деаэратор, tг = 70 оС; tх - температура холодной воды, tх = 5 оС.
4.Температура воды на входе в котел tвх определяется из уравнения теплового баланса точки смешения В
=
(2.28)
где вх - плотность воды на входе в котел, кг/м3.
Температура tвх должна быть не менее 65 оС, если топливо - газ, и 45..55 оС, если топливо - уголь или мазут. В случае невыполнения этого условия следует повторить расчет пп. 3 и 4, приняв другие значения tрец и соответствующее ему значение Gрец.
5. Расход воды через котлы Gк, м3/ч, с учетом необходимости подогрева добавочной воды
(2.29)
где вых - плотность воды при температуре tвых, кг/м3.
Полученное значение должно соответствовать значению Gк из выражения
(2.30)
Если это условие не выполняется расчет необходимо повторить, приняв новое значение tрец и соответствующее ему значение Gрец п.3.
2.5 Компоновка котельной
Компоновка предусматривает правильное размещение котельных агрегатов и вспомогательного оборудования в помещении котельной.
В зависимости от климатической зоны котельные строят закрытыми (при температуре tн -20 оС). В закрытых котельных все оборудование размещают внутри здания; в полуоткрытых часть оборудования, не требующего постоянного наблюдения, выносят из здания; в открытых защищают только фронт котлов, насосы и щиты управления.
Оборудование котельной компонуют таким образом, чтобы здание ее можно было построить из унифицированных сборных конструкций. Одна торцевая стена должна быть свободной на случай расширения котельной. В котельных площадью более 200 м2 предусматриваются два выхода, находящихся в противоположных сторонах помещения, с дверьми, открывающимися наружу. Одна из дверей по размерам должна обеспечивать возможность переноса оборудования котельной (хотя бы в разобранном виде). При размещении оборудования необходимо соблюдать следующие требования.
Расстояние от фронта котлов до противоположной стены должно быть не менее 3 м, при механизированных топках не менее 2 м. Для котлов, работающих на газе или мазуте, минимальное расстояние от стены до горелочных устройств 1 м. Перед фронтом котлов допускается устанавливать дутьевые вентиляторы, насосы и тепловые щиты. При этом ширина свободного прохода вдоль фронта принимается не менее 1,5 м. Проходы между котлами, котлами и стенами котельной оставляют равным не менее 1 м, а между котлами с боковой обдувкой газоходов - 1,5 м. Чугунные котлы с целью сокращения длины котельной устанавливают попарно в общей обмуровке. Просвет между верхней отметкой котлов и нижними частями конструкций покрытия здания должен быть не менее 2 м.
2.6 Технико-экономические показатели работы котельной
Работа котельной оценивается ее технико-экономическими показателями.
Часовой расход топлива, кг/ч
(2.31)
где Фр - расчетная тепловая нагрузка котельной, Вт; q - удельная теплота сгорания топлива, кДж/кг (кДж/м3),; к.а - КПД котельного агрегата. Если в котельной установлены паровые и водогрейные котлы, то под к.а понимают его среднезвешенное значение для котлоагрегатов обоего вида с учетом доли вырабатываемой им теплоты.
Часовой расход условного топлива, кг/ч
(2.32)
Годовой расход топлива (т или тыс.м3)
(2.33)
где Qгод - годовой расход теплоты, ГДж/год.
Годовой расход условного топлива (т или тыс.м3)
(2.34)
Удельный расход топлива (т/ГДж или тыс.м3/ГДж)
(2.35)
Удельный расход условного топлива (т/ГДж или тыс.м3/ГДж)
(2.36)
Коэффициент использования установленной мощности котельной
(2.37)
где Фуст - суммарная тепловая мощность котлов, установленных в котельной, МВт; 8760 - число часов в году.
3. Гидравлический и тепловой расчет сети теплоснабжения
3.1 Общие сведения о тепловых сетях
Тепловыми сетями называют систему трубопроводов, поставляющих тепловую энергию потребителям. В зависимости от вида транспортируемого теплоносителя тепловые сети разделяют на водяные и паровые. Водяные системы теплоснабжения могут быть закрытыми и открытыми. В закрытой системе вся вода возвращается к источнику теплоснабжения, в открытой - часть воды из тепловой сети разбирается потребителями на горячее водоснабжение.
По числу параллельно идущих теплопроводов различают одно-, двух-, и многотрубные теплофикационные сети.
Более прогрессивна открытая двухтрубная система теплоснабжения с непосредственным разбором воды на нужды горячего водоснабжения из тепловых сетей. Затраты на строительство таких систем по сравнению с многотрубными снижаются на 40...50 %.
3.2 Гидравлический расчет тепловых сетей
Цель гидравлического расчета - определить диаметры теплопроводов, потери напора в них, подобрать сетевые насосы и другое оборудование, предназначенное для транспортировки теплоносителя.
Потери давления в тепловой сети вызваны трением воды или пара о стенки трубопроводов и местными сопротивлениями (котел, арматура, компенсаторы, фасонные части труб и др.)
Для участка теплопровода постоянного диаметра потери давления, Па, определяют по выражению
(3.1)
где l - длина прямого участка трубопровода, м; lэ - условная дополнительная длина прямых труб, эквивалентная по потери давления местным сопротивлениям рассматриваемого участка, м; р - потери давления на 1 м трубы (для магистральных тепловых сетей принимают р = 60...80 Па/м, для ответвлений от главной магистрали р = 200...300 Па/м).















