150880 (621480), страница 3
Текст из файла (страница 3)
Результаты расчетов сводим в таблицу 7
Таблица 7 Результаты расчета тепловоздушного режима и воздухообмена
Наименование помещения | Периоды года | Наружный воздух | Внутренний воздух | Влаговыделения, кг/ч | |||||
|
|
|
| от животных | от обор. и с пола | итого | |||
Свинарник-маточник на 300 мест | Холодный | -21 | 70 | 20 | 70 | 69,75 | 6,98 | 76,73 | |
Переходный | 8 | 70 | 20 | 70 | 69,75 | 6,98 | 76,73 | ||
Теплый | 22,4 | 70 | 27,4 | 70 | 104,63 | 26,16 | 130, 79 |
Теплопоступления, кВт | Теплопо тери через ограждения, кВт | Избыто-чная теплота, кВт | Угловой коэффициент, кДж/кг | Расход вентил. воздуха
| Темпера-тура приточн. воздуха
| |||
От животных | От оборудования | От солнечной радиации | Итого | |||||
101,52 | - | - | 101,52 | 163,2 | 61,68 | 7705,06 | 18000 | 38,6 |
101,52 | - | - | 101,52 | 47,77 | 53,75 | 2552,33 | 273 | - |
97,57 | - | 47,47 | 144,94 | - | 144,94 | 3989,48 | 42000 | - |
4. Выбор системы отопления и вентиляции.
На свиноводческих фермах применяют вентиляционные системы, посредствам которых подают подогретый воздух в верхнюю зону помещения по воздуховодам равномерной раздачи. Кроме того, предусматривают дополнительную подачу наружного воздуха в теплый период года через вентбашни.
Тепловая мощность отопительно-вентиляционной системы, :
,
где – тепловой поток теплопотерь через ограждающие конструкции,
;
– тепловой поток на нагревание вентиляционного воздуха,
;
– тепловой поток на испарение влаги внутри помещения,
;
– тепловой поток явных тепловыделений животными,
.
(табл. 6 [2]).
Тепловой поток на нагревание приточного воздуха, :
,
где – расчетная плотность воздуха (
);
– расход приточного воздуха в зимний период года, (
);
– расчетная температура наружного воздуха, (
);
– удельная изобарная теплоемкость воздуха (
).
.
Тепловой поток на испарение влаги с открытых водных и смоченных поверхностей, :
,
где – расход испаряемой влаги для зимнего периода,
.
.
Тепловой поток явных тепловыделений, :
,
где – температурный коэффициент явных тепловыделений;
– тепловой поток явных тепловыделений одним животным,
;
– число голов.
;
Подача воздуха одной ОВС:
;
Определим температуру подогретого воздуха, :
,
где – наружная температура в зимний период года,
;
.
5. Расчет и выбор калориферов
В системе вентиляции и отопления устанавливаем водяной калорифер. Теплоноситель – пар низкого давления.
Предусматриваем две отопительно-вентиляционные системы, поэтому:
Рассчитаем требуемую площадь живого сечения, , для прохода воздуха:
,
где – массовая скорость воздуха,
, (принимается в пределах 4–10
).
Принимаем массовую скорость в живом сечении калорифера:
.
.
Принимаем один калорифер ( ), (
).
По таблице 8.10 [2] по рассчитанному живому сечению выбираем калорифер марки КВСБ со следующими техническими данными:
Таблица 8. Технические данные калорифера КВСБ.
Номер калорифера | Площадь поверхности нагрева | Площадь живого сечения по воздуху | Площадь живого сечения по теплоносителю |
10 | 28,11 | 0,581 | 0,00261 |
Уточняем массовую скорость воздуха:
.
Определяем коэффициент теплопередачи, :
,
где – коэффициент, зависящий от конструкции калорифера;
– массовая скорость в живом сечении калорифера,
;
и
– показатели степени.
Из таблицы 8.12 [2] выписываем необходимые данные для КВСБ:
;
;
;
;
.
.
Определяем среднюю температуру воздуха, :
.
Среднюю температуру воды принимаем равной температуре насыщения (табл 1.8. [2])
Определяем требуемую площадь поверхности теплообмена калориферной установки, :
.
Определяем число калориферов:
,
где – общая площадь поверхности теплообмена,
;
– площадь поверхности теплообмена одного калорифера,
.
.
Округляем до большего целого значения, т.е.
.
Определяем процент запаса по площади поверхности нагрева:
.
– удовлетворяет.
Аэродинамическое сопротивление калориферов, :
,
где – коэффициент, зависящий от конструкции калорифера;
– показатель степени.
.
Аэродинамическое сопротивление калориферной установки, :
,
где – число рядов калориферов;
– сопротивление одного ряда калориферов,
.
.
6. Аэродинамический расчет воздуховодов
В с/х производственных помещениях используют перфорированные пленочные воздухораспределители. Предусматривают расположение двух несущих тросов внутри пленочной оболочки, что придает воздуховодам овальную форму при неработающем вентиляторе и тем самым предотвращает слипание пленки.
Задача аэродинамического расчета системы воздуховодов состоит в определении размеров поперечного сечения и потерь давления на отдельных участках системы воздуховодов, а также потери давления во всей системе воздуховодов.
Исходными данными к расчету являются: расход воздуха , длина воздухораспределителя
, температура воздуха и абсолютная шероховатость
мм (для пленочных воздуховодов).
В соответствии с принятыми конструктивными решениями составляют расчетную аксонометрическую схему воздуховодов с указанием вентиляционного оборудования и запорных устройств.
Схему делят на отдельные участки, границами которых являются тройники и крестовины. На каждом участке наносят выносную линию, над которой проставляют расчетный расход воздуха (
), а под линией – длину участка
(м). В кружке у линии указывают номер участка.
Выбираем основные магистральные расчетные направления, которые характеризуются наибольшей протяженностью.
Расчет начинаем с первого участка.
Используем перфорированные пленочные воздухораспределители. Выбираем форму поперечного сечения – круглая.
Задаемся скоростью в начальном поперечном сечении:
.
Определяем диаметр пленочного воздухораспределителя, :
.
Принимаем ближайший диаметр, исходя из того, что полученный равен
(стр. 193 [2]).
Динамическое давление, :
,
где
- плотность воздуха.
.
Определяем число Рейнольдса:
,
где – кинематическая вязкость воздуха,
,
(табл. 1.6 [2]).
.
Коэффициент гидравлического трения:
,
где – абсолютная шероховатость,
, для пленочных воздуховодов принимаем
.
.
Рассчитаем коэффициент, характеризующий конструктивные особенности воздухораспределителя:
,
где – длина воздухораспределителя,
.
.
Полученное значение коэффициента меньше 0,73, что обеспечивает увеличение статического давления воздуха по мере приближения от начала к концу воздухораспределителя.
Установим минимальную допустимую скорость истечения воздуха через отверстие в конце воздухораспределителя, :
,
где – коэффициент расхода (принимают 0,65 для отверстий с острыми кромками).
.
Коэффициент, характеризующий отношение скоростей воздуха:
,
где – скорость истечения через отверстия в конце воздухораспределителя,