150185 (621232), страница 3
Текст из файла (страница 3)
Так как на обоих участках электропередачи одинаковые напряжения, то их режимы оказываются взаимосвязанными, потому что создание перепада напряжения на первом участке ( ) приводит к возникновению перепада на втором участке (
). Поэтому в расчётах мощности ИРМ учитывается изменение реактивной мощности в начале второго участка и контролируется величина
в конце его, а в расчётах приведенных затрат – возмещение потерь энергии при передаче по двум участкам.
МВт
МВАр
МВт
МВАр
МВт
МВАр
333,4 кВ
МВт
МВАр
0,994
Проверка технических ограничений:
кВ <
кВ <
кВ
(на потребление)
кВ <
кВ <
кВ
Проверим напряжение в середине линии 1:
Ом
МВА
кА
= кВ
кВ <
кВ
Проверим напряжение в середине линии 2:
Ом
МВА
кА
кВ
кВ <
кВ
Таким образом, в этом режиме не нужно установить реакторы и синхронные компенсаторы на промежуточной подстанции.
2.2 Режим наименьшей передаваемой мощности
По условию в этом режиме наибольшая передаваемая мощность по головному участку, а также мощность потребителей промежуточной подстанции составляют 30% от соответствующих значений для режима наибольших нагрузок, то есть:
P0 = 700·0,3 = 210 МВт; PПС = 350·0,3 = 105 МВт.
В связи с этим отключены 3 блока на ГЭС, а также по одной цепи линии на каждом участке (для снижения избытка реактивной мощности в электропередаче); считаем, что все автотрансформаторы остаются в работе.
Параметры элементов схемы замещения:
• Линия 1: Ом;
Ом;
См;
МВт
• Линия 2: Ом;
Ом;
См;
МВт
• Группа трансформаторов ГЭС: Ом
• 2 автотрансформатора 330/220 кВ (АТ):
Ом;
;
Ом
Передаваемая по линиям мощность в этом режиме значительно меньше натуральной, поэтому в линиях возникает избыточная реактивная мощность, которая стекает с линий, загружая генераторы передающей станции и приёмную систему. Одновременно повышается напряжение в средней зоне участков электропередачи. С целью снижения генерации реактивной мощности и обеспечения допустимых значений напряжения в середине линии, зададимся напряжением U1 не выше номинального и проведём расчёт режима при различных значениях U2 для отыскания оптимального перепада напряжений.
U1 = 330 кВ, U2 = 330 кВ
МВт
Ом;
Ом
См
;
;
МВАр
МВАр
Устанавливаем в начале первого участка электропередачи 1 группу реакторов 3×РОДЦ – 60000/500 с целью поглощения избыточной реактивной мощности, стекающей с линии к генераторам (иначе UГ < UГ.ДОП.). Тогда:
МВАр
13,158 кВ
МВАр
0,997
МВт
МВАр
МВт
МВАр
МВт
МВАр
Устанавливаем в конце первого участка электропередачи 1 группу реакторов 3×РОДЦ – 60000/500 с целью поглощения избыточной реактивной мощности, стекающей с обеих линий. Тогда:
МВАр
Методом систематизированного подбора подбираем Q2 так, чтобы, получить коэффициент мощности в конце второго участка электропередачи не ниже заданного ( ), а напряжение U3 на шинах системы близким к номинальному (330 кВ).
Q2 = – 81 МВАр
Принимаем МВт (собственные нужды подстанции и местная нагрузка).
МВт
МВт
МВАр
МВАр
МВАр
= 327,61 кВ
МВт
МВАр
240,25 кВ
МВт
МВАр
МВАр
Мощность синхронного компенсатора 17,26 МВАр
10,67 кВ
Приведенные затраты:
727 тыс. руб.
Результаты расчёта при других значениях U2 представим в виде таблицы:
Таблица 2 – Результаты расчёта режима наименьшей передаваемой мощности
U2, кВ | 315 | 320 | 325 | 330 |
δ° | 14,65 | 14,52 | 14,39 | 14,27 |
Q'ВЛ1, МВАр | 54,37 | 41,54 | 28,72 | 15,89 |
Q0, МВАр | -28,52 | -41,34 | -54,17 | -66,96 |
Q0 + QР, МВАр | 44,77 | 31,95 | 19,12 | 6,31 |
UГ, кВ | 13,67 | 13,59 | 13,51 | 13,43 |
cosφГ | 0,953 | 0,969 | 0,982 | 0,992 |
ΔPВЛ1, МВт | 5,97 | 5,82 | 5,7 | 5,63 |
ΔQВЛ1, МВАр | 54,71 | 53,28 | 52,22 | 51,55 |
P''ВЛ1, МВт | 203,42 | 203,58 | 203,69 | 203,76 |
Q''ВЛ1, МВАр | -0,347 | -11,74 | -23,51 | -35,66 |
P1, МВт | 202,81 | 202,97 | 203,08 | 203,66 |
Q1, МВАр | 72,93 | 63,89 | 54,5 | 44,77 |
Q1 - QР, МВАр | 8,13 | -2,98 | -14,48 | -26,35 |
Q2, МВАр | -109 | -112 | -100 | -81 |
P2, МВт | 96,31 | 96,47 | 96,58 | 96,65 |
QАТ, МВАр | 117,13 | 109,02 | 85,52 | 41,34 |
Q'АТ, МВАр | 112,18 | 104,57 | 82,52 | 38,99 |
U'2, кВ | 307,78 | 313,39 | 319,91 | 327,61 |
UСН, кВ | 225,71 | 229,82 | 234,6 | 240,25 |
Q'АТ.Н, МВАр | 90,86 | 83,25 | 60,74 | 17,67 |
QАТ.Н, МВАр | 78,73 | 73,42 | 55,72 | 17,26 |
QСК, МВАр | 78,73 | 73,42 | 55,72 | 17,26 |
UНН, кВ | 9,78 | 10,14 | 10,76 | 10,67 |
З, тыс. руб. | 1126,6 | 1072,8 | 929,8 | 727 |
Минимум затрат наблюдается при U2 = 330 кВ. Варианты с U2 = 315 кВ и U2 = 320 кВ не подходят и по техническим причинам (UНН < UДОП = 10,45 кВ).
Поскольку автотрансформатор АТ2 (330/220 кВ) НЕ имеет РПН со стороны СН, то напряжение U3 зависит от U2.
Принимаем U3 = 330 кВ
МВт;
МВАр
МВАр
МВАр
МВт
МВАр
МВт
МВАр
МВт
МВАр
335,7 кВ
МВт
МВАр
0,981
Проверка технических ограничений:
кВ <
кВ <
кВ
(на потребление)
кВ <
кВ <
кВ
Проверим напряжение в середине линии 1:
Ом
МВА
кА
кВ
кВ <
кВ
Проверим напряжение в середине линии 2:
Ом
МВА
кА
кВ
кВ <
кВ
Таким образом, в этом режиме необходимо установить 2 синхронных компенсатора типа КСВБ 50–11 на промежуточной подстанции, 1 группу однофазных реакторов 3×РОДЦ – 60000/500 в начале первой линии и 1 группу однофазных реакторов 3×РОДЦ – 60000/500 в конце первой линии.
2.3 Послеаварийный режим
Этот режим отличается от режима наибольшей передаваемой мощности тем, что происходит аварийное отключение одной цепи головного участка электропередачи.
Задачей расчёта в данном случае является определение допустимости такого режима и выбор средств, обеспечивающих работу электропередачи.
Поскольку наибольшая передаваемая мощность по головному участку (P0 = 700 МВт) значительно больше натуральной мощности линии (PC = 356,4 МВт), то необходимо задействовать оперативный резерв приёмной системы для разгрузки головной линии. Тогда P0 = P0 – РРЕЗ = 700 – 200 МВт = 500 МВт
Параметры элементов схемы замещения: