114727 (617291), страница 2
Текст из файла (страница 2)
Весьма часто понятию вектора дается другое определение: вектором называется направленный отрезок. При этом векторы (т.е. направленные отрезки), имеющие одинаковую длину и одно и то же направление (рис.3), уславливаются считать равными.
Векторы называются одинаково направленными, если их полупрямые одинаково направлены.
Сложение векторов.
Все сказанное пока еще не дает понятие вектора достаточно содержательным и полезным. Большую содержательность и богатую возможность приложений понятие вектора получает тогда, когда мы вводим своеобразную «геометрическую арифметику» – арифметику векторов, позволяющую складывать векторы, вычитать их и производить над ними целый ряд других операций. Отметим в связи с этим, что ведь и понятие числа становится интересным лишь при введении арифметических действий, а не само по себе.
С
уммой векторов а и в с координатами а1, а2 и в1, в2 называется вектор с с координатами а1 + в1, а2 + в2, т.е.
а (а1; а2) + в (в1;в2) = с (а1 + в1; а2 + в2).
Следствие:
а
+ в = в + а , (коммутативность)
а
+ ( в + с ) = (а + в) + с. (ассоциативность)
Для доказательства коммутативности сложения векторов на плоскости необходимо рассмотреть пример.
а
и в – векторы (рис.5).
П
усть ОА =а, ОВ = в.
1. Строим параллелограмм ОАСВ: АМ II ОВ, ВН II ОА.
2
. а = ОА = ВС,
в = ОВ = АС, т.к. параллелограмм.
3
. ОА + АС = ОВ + ВС = ОС, значит а + в = в + а. ч.т.д.
Д
ля доказательства ассоциативности мы отложим от произвольной точки О вектор ОА = а, от точки А вектор АВ = в и от точки в – вектор ВС = с. Тогда мы имеем: АВ + ВС =АС.
(
а + в ) + с = (ОА + АВ) + ВС = ОВ + ВС = ОС,
а
+ (в + с ) = ОА + (АВ + ВС) = ОА + АС = ОС,
откуда и следует равенство
а + ( в + с ) = (а + в) + с.
Заметим, что приведенное доказательство совсем не использует чертежа. Это характерно (при некотором навыке) для решения задач при помощи векторов.
О
становимся теперь на случае, когда векторы а и в направлены в противоположные стороны и имеют равные длины; такие векторы называют противоположными. Наше правило сложения векторов приводит к тому, что сумма двух противоположных векторов представляет собой «вектор», имеющий нулевую длину и не имеющий никакого направления; этот «вектор» изображается «отрезком нулевой длины», т.е. точкой. Но это тоже вектор, который называется нулевым и обозначается символом 0.
Равенство векторов.
Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.
Из данного определения равенства векторов следует, что разные векторы одинаково направлены и равны по абсолютной величине.
И обратно: если векторы одинаково направлены и равны по абсолютной величине, то они равны.
Д
ействительно, пусть векторы АВ и СD – одинаково направленные векторы, равные по абсолютной величине (рис.6). Параллельный перенос, переводящий точку С в точку А, совмещает полупрямую СD с полупрямой АВ, так как они одинаково направлены. А так как отрезки АВ и CD равны, то при этом точка D совмещается с точкой В, то есть параллельный перенос переводит вектор CD в вектор АВ. Значит, векторы АВ и СD равны, что и требовалось доказать.
Скалярное произведение двух векторов и его свойства.
Скалярным произведением двух нулевых векторов называется число, равное произведению числовых значений длин этих векторов на косинус угла между векторами.
Обозначение:
а
х в = IaI * IbI * cos ( а, в).
Свойства скалярного произведения:
1
. а х в = в х а.
Д
ля того, чтобы два нулевых вектора а и в были перпендикулярны, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. а х в = 0.
В
ыражение а х а будем обозначать а2 и называть скалярным квадратом вектора а.
Свойства операций над векторами.
Имеют место следующие теоремы об операциях над векторами, заданными в координатной форме.
1
. Пусть даны а = (ах, аy, аz) и в = ( вx, ву, вz), тогда сумма этих векторов есть вектор с, координаты которого равны сумме одноименных координат слагаемых векторов, т.е. с = а + в = (ах + вx; аy + ву; аz + вz).
Пример 1.
а
= ( 3; 4; 6) и в = ( -1; 4; -3), тогда с = ( 3 + ( -1); 4 + 4; 6 + (-3)) = ( 2; 8; 3).
2
. а = (ах, аy, аz) и в = ( вx, ву, вz), тогда разность этих векторов есть вектор с , координаты которого равны разности одноименных координат данных векторов, т.е. с = а - в = (ах - вx; аy - ву; аz - вz).
Пример 2.
а
= ( -2; 8; -3) и в = ( -4; -5; 0), тогда с = а – в = ( -2 – ( -4 ); 8 – ( -5 ); -3 –0 ) = = ( 2; -13; -3).
3
. При умножении вектора а = (ах, аy, аz) на число м все его координаты умножаются на это число, т.е. ма = ( мах, маy, маz).
Пример 3.
а
= ( -8; 4; 0) и м = 3, тогда 3а = ( -8 х 3; 4 х 3; 0 х 3) = ( -24; 12; 0).
Понятие вектора, которое нашло широкое распространение в прикладных науках, явилось плодотворным и в геометрии. Аппарат векторной алгебры позволил упростить изложение некоторых сложных геометрических понятий, доказательства некоторых теорем школьного курса геометрии, позволил создать особый метод решения различных геометрических задач.
Рассмотрим доказательство некоторых теорем с помощью векторов.
Теорема 1.
Диагонали ромба взаимно перпендикулярны.
Доказательство.
Пусть АВСD – данный ромб (рис.7). Введем обозначения: АВ = а, ВС = в. Из определения ромба: АВ = DC = а, AD = ВС = в.
П
о определению суммы и разности векторов АС = а + в; DВ = а – в.
Р
ассмотрим АС * DВ = (а + в )( а – в) = а2 – в2 .
Т
ак как стороны ромба равны, то а = в. Следовательно, AC * DB =0. Из последнего получаем АС
DВ, т.е. DB АС. Ч.т.д.
Выясним, что можно сказать о тех множествах, между элементами которых отображение
устанавливает соответствие. Рассмотрим плоскость. Выберем на ней некоторую точку, назовем ее нулем и обозначим знаком
. После этого с любой точкой плоскости мы можем связать вектор (такой, каким его представляют в школе: направленным отрезком, стрелочкой, идущей из точки
в любую точку плоскости). Теперь множество точек плоскости можно трактовать как множество векторов, имеющих общее начало в точке
. Эта трактовка есть, разумеется, не что иное, как взаимно однозначное отображение множества точек плоскости на множество компланарных вектоpов, выходящих из точки
. Пусть две точки
и
лежат на одной пpямой с точкой
(или, что то же, два вектоpа
и
лежат на одной пpямой). Допустим, каким-то обpазом мы умеем измеpять длину. Обозначим длину вектоpа чеpез
. Если
,
то будем говоpить, что
,
когда
и
лежат по одну стоpону от точки
, и
,
когда они лежат по pазные стоpоны (pис.1 а).
Таким обpазом, мы опpеделили умножение вектоpа на число. Далее, пусть
и
-- два пpоизвольных вектоpа. Опpеделим их сумму
как вектоp, напpавленный по диагонали паpаллелогpамма, постpоенного на этих вектоpах, длина которого pавна длине диагонали, т.е.
(pис.1 б).
|
|
| Рисунок 1. Действия над векторами. |
Необходимо понимать, что способы нахождения
и
мы именно опpеделили, pуководствуясь либо личными вкусами, либо дpугими внешними пpичинами. Само по себе множество точек не пpедполагает какого-либо способа опpеделения
и
. Мы можем (если в том возникнет потpебность) опpеделить эти опеpации иным способом и даже назвать по-дpугому (нет, опять же, никаких внутpенних пpичин называть вектоp
суммой, а не, скажем, пpоизведением). То, как мы опpеделили умножение на число и сумму, есть дань тpадиции и тем физическим сообpажениям, котоpые легли в основу этой тpадиции. Умножение на число и сумма вектоpов -- пpимеpы отобpажений, о котоpых говоpилось выше. Пеpвое отобpажает плоскость в себя: некоторая точка плоскости отображается в точку той же самой плоскости. Втоpое отобpажает любую паpу вектоpов (элемент области опpеделения есть любая паpа вектоpов) в вектоp: любой паре точек плоскости ставится в соответствие третья точка этой плоскости. Опpеделенные нами отобpажения обладают pядом свойств. Во-первых, имеет место коммутативность и ассоциативность сложения и умножения на число:















