4933-1 (616296), страница 4
Текст из файла (страница 4)
Модели Учащихся (БДМУ)
WS-LM
Модуль БД
Модуль Моделирования Учащихся
Коммуникационный модуль
Publication Module
Агент МУДП
(клиент)
Агент МУДП
(клиент)
Агент МУДП
(клиент)
Рис.2: Архитектура WS-LM
Как уже упоминалось выше, Агент МУДП на стороне клиента, который отвечает за поддержание моделей учащихся, создает новую запись в модели учащегося каждый раз, когда пользователь взаимодействует с Web F-SMILE. Это происходит в целях синхронизации. Однако такая подробная модель учащегося требует значительного места для хранения и времени для получения сведений Веб Службой или Агентом МУДП. Для того чтобы справиться с данными проблемами, модель учащегося разделена на две части; первая часть содержит итоговые сведения об учащемся, которые старше трех месяцев, а вторая часть – детальное описание взаимодействий учащегося с Web F-SMILE за последние три месяца. Модулю DM поручено ежедневное объединение записей моделей учащихся. Ежедневно Модуль DM удаляет записи старше трех месяцев из второй части модели учащегося и объединяет их с первой частью.
Выводы
В данной статье мы описали мульти-агентную (multi-agent) обучающую среду (learning environment), которая помогает пользователям научиться работать с их файловым хранилищем (file store). Комплекс назначает Агента МУКП для наблюдения за пользователями во время работы в защищенном режиме (protected mode) и, в случае если он обнаруживает проблематичную ситуацию, он пытается обнаружить причину возникновения проблемы и предложить подходящий совет. Начинающие пользователи могут получить преимущества от советов комплекса и от возможности адаптивного обучения, потому что они могут учиться на своих собственных ошибках. Адаптивность в обучении зависит от таких факторов, как предыдущие знания учащегося, его/ее способности и потребности.
Основная проблема автономных приложений (standalone applications) в компьютерных лабораториях состоит в том, что пользователь не всегда может использовать один и тот же ПК и поэтому ни один ПК не может содержать полную и аккуратную модель каждого пользователя. Данная проблема решена в Web F-SMILE при помощи использования Веб служб для моделирования учащихся. Веб службы, в общем смысле этого термина, - это службы, предлагаемые через Веб. Они используются в Web F-SMILE для взаимодействия агентов комплекса с Сервером Моделирования Учащихся (WS-LM). WS-LM поддерживает центральную базу данных со всеми моделями учащихся и предоставляет Агентам МУДП клиентских приложений доступ к этим сведениям фактически с любого компьютера. К тому же, Web F-SMILE хранит для каждого учащегося одну модель учащегося централизованно на WS-LM, а другую - на каждом компьютере, который пользователь использует для взаимодействия с Web F-SMILE. Таким образом, Web F-SMILE справляется с возможными проблемами, которые могут появиться из-за возможных коммуникационных сбоев между ПК учащегося и Сервером.
Предложенная архитектура Веб службы сравнивалась с наиболее используемыми архитектурами в ИОК, которые работают через Веб. Это сравнение показало, что моделирование учащихся, основанное на Веб службах, представляет собой усовершенствованное взаимодействие сервера с клиентскими приложениями по сравнению с другими традиционными архитектурами.
Список литературы
Alpert, S.R., Singley, M.K. & Fairweather P.G. (1999). Deploying Intelligent Tutors on the Web: An Architecture and an Example. International Journal of Artificial Intelligence in Education, 10, 183-197.
Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User Adapted Interaction, 6(2-3), 87-129.
Brusilovsky, P., Ritter, S. & Schwarz, E. (1996). ELM-ART: An Intelligent Tutoring System on World Wide Web. In C. Frasson, G. Gautier & A. Lesgold (eds.) Intelligent Tutoring Systems, Third International Conference, ITS'96, Berlin: Springer, 261-269.
Collins, A. & Michalski, R. (1989). The Logic of Plausible Reasoning: A core Theory, Cognitive Science, 13, 1-49
El-Beltagy, S., De Roure, D. & Hall W. (1999). A Multiagent system for Navigation Assistance and Information Finding. In Proceedings of the 4 International Conference on the Practical Applications of Intelligent Agents and Multi-Agent Technology, 281-295.
Elliot, C. (1997). Implementing Web-based intelligent tutors. In Proceedings of the workshop "Adaptive Systems and User Modelling on the World Wide Web", Sixth International conference on User Modelling.
Johnson, W.L., Rickel, J.W. & Lester, J.C. (2000). Animated Pedagogical Agents: Face-to-Face Interaction in Interactive Learning Environments. International Journal of Artificial Intelligence in Education, 11, 47-78
Kuno, H. & Sahai, A. (2002). My Agent Wants to Talk to Your Service: Personalizing Web Services through Agents. HPL-2002-114. HP Labs Technical Report.
Lesser V. (1995). Multiagent Systems: An Emerging Subdiscipline of AI. ACM Computing Surveys, 27 (3), 340-342.
McCalla, G. (1992). The central importance of student modelling to intelligent tutoring. In E. Costa (Ed.) New Directions for Intelligent Tutoring Systems, Berlin: Springer Verlag.
Microsoft Corporation, Microsoft® Windows® 98 Resource Kit, Microsoft Press, 1998.
Nakabayashi, K., Maruyama, M., Koike, Y., Kato, Y., Touhei, H. & Fukuhara, Y. (1997). Architecture of an Intelligent Tutoring System on the WWW. In Proceedings of AIED' 97, the Eighth World Conference on Artificial Intelligence in Education, 39-46.
Okazaki, Y., Watanabe, K. & Kondo, H. (1996). An Implementation of an intelligent tutoring system on the World-Wide Web. Educational Technology Research, 19 (1), 35-44.
Papadakis, I. & Chrissikopoulos, V. (2000). A Digital Library Framework based on
XML. In Proceedings of the 3rd International Conference of Asian Digital
Library - ICADL '00, 81-88.
Rich, E. (1989). Stereotypes and User Modeling. In Kobsa, A. & Wahlster, W. (eds.) User Models in Dialog Systems, 199-214.
Rich, E. (1999). Users are individuals: individualizing user models. International Journal of Human-Computer Studies, 51, 323-338.
Ritter, S. (1997). PAT Online: A model-tracing tutor on the World-Wide Web. In Brusilovsky, P., Nakabayashi, K. & Ritter S. (Eds.), Proceedings of the workshop "Intelligent Educational Systems on the World Wide Web” 8th World Conference of the AIED Society, 11-17.
Sison, R. & Shimura, M. (1998). Student Modeling and Machine Learning. International Journal of Artificial Intelligence in Education, 9, 128-158.
Tsalgatidou, A. & Pilioura, T. (2002). An Overview of Standards and Related Technology in Web Services. Distributed and Parallel Databases, 12, 135-162.
Vassileva, J. (1997). Dynamic Courseware Generation, Communication and Information Technologies, 5 (2), 87-102.
Virvou, M. & Du Boulay, B. (1999) Human Plausible Reasoning for Intelligent Help, User Modeling and User-Adapted Interaction, 9, 321-375.
Virvou, M. & Kabassi, K. (2001). Evaluation of the advice generator of an intelligent learning environment. In Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT 2001), IEEE Computer Society, 339-342.
Virvou, M. & Kabassi, K. (2002). Reasoning about Users’ Actions in a Graphical User Interface. Human-Computer Interaction, 17(4), 369-399.
Warendorf, K. & Tan, C. (1997). ADIS-An animated data structure intelligent tutoring system or Putting an interactive tutor on the World Wide Web. In Proceedings of the workshop "Intelligent Educational Systems on the World Wide Web” 8th World Conference of the AIED Society.