86391 (612736), страница 2

Файл №612736 86391 (Деякі скінченно-різнецеві методи розв’язування звичайних диференціальних рівнянь) 2 страница86391 (612736) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)



Тоді значення невідомої функції в точці xn+1 обчислюється відносно значення в попередній точці xn по такій формулі:



де h— крок інтегрування, а коефіцієнти k n розраховуються наступним чином:





Це метод 4-го порядку, тобто похибка на кожному кроці становить O(h5), а сумарна похибка на кінцевому інтервалі інтегрування є величиною O(h4) .



Прямі методи Рунге — Кутта

Група прямих методів Рунге — Кутта є узагальненням методу Рунге — Кутти 4-го порядку. Воно задається формулами



де



Конкретний метод визначається числом s і коефіцієнтами bi,aij i ci . Ці коефіцієнти часто впорядковують в таблицю

0

c2 a21

c3 a31 a32

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙

cs as1 as2 ∙ ∙ ∙ as,s − 1

b1 b2 bs − 1 bs



Для коефіцієнтів методу Рунге — Кутта мають справджуватись умови



Якщо ми хочемо, щоб метод мав порядок p, то варто так само забезпечити умову — наближення, отримане по методу Рунге — Кутти. Після багаторазового диференціювання ця умова перетвориться в систему поліноміальних рівнянь на коефіцієнти методу.



5. Неявні схеми Рунге-Кутта



Викладений тут алгоритм є неявна схема Рунге-Кутта четвертого порядку. У неї, як завжди, вбудована оцінка погрішності, яка дорівнює різниці відповідей четвертого і третього порядків точності, вычисленних по використаних точках. Іншими словами, в порівнянні з рекомендованим вище явним методом Рунге-Кутта п'ятого порядку, усі порядки в точності на одиницю менше. Нагадаємо, що в методі Рунге-Кутта п’ятого порядку використовується шість точок. У неявній схемі точок буде значно менше, оскільки для неявних схем зв'язок порядку точності з кількістю використаних точок не така, як для явних схем. Наприклад, як ми вже бачили, одноточкова неявна схема може мати другий порядок точності. У нашій неявній схемі четвертого порядку ми обійдемося всього-навсього трьома точками:



На перший погляд, слід спочатку вичислити матрицю , а потім застосовувати її потрібну кількість разів до усім fj. Проте, як ми знаєм (див. частину I, розділ "Системи лінійних рівнянь"), це не є правильний спосіб рішення СЛР "про запас". Правильний спосіб рішення СЛР з цією матрицею раз і назавжди (для довільної правої частини) - це LU - розкладання матриці . При цьому матриця розкладається на ліву нижню трикутну матрицю L і праву верхню трикутну матрицю U. Після цього рішення будь-хто СЛР з матрицею будується за допомогою прямої підстановки (для матриці L) і потім зворотної підстановки (для матриці U). Кожна з підстановок вимагає N2 операцій. У нашому випадку має сенс скомбінувати праві частини усіх СЛР так, щоб кількість застосувань матриці (точніше, кількість СЛР, які потрібно вирішити) була мінімальною. Для цього досить ввести проміжні змінні . В результаті ми отримаємо наступний рецепт для одного кроку за часом t→t + h.

Алгоритм:

Для поточної точки обчислюваний

Крім того, вираховуєм

Виконуємо LU - розкладання матриці А. (Це робиться один раз і назавжди для цього кроку за часом t→t + h).

За допомогою LU-розкладання обчислюємо . Обчислюваний . Обчислювано . З допомогою LU - розкладання обчислюваний

Обчислюємо

Обчислюваний .

За допомогою LU розкладання обчислюємо

За допомогою LU розкладання обчислюваний

Обчислюємо значення :

Обчислюємо погрішність

- Перетворюємо вектор Е на одне число є, що характеризує погрішність на цьому кроці.

Ця схема призводить до досить забавної поведінки "швидких" змінних. Поведінка виявляється абсолютно однаковою як у разі релаксаційного рівняння , так і у разі осциляторного рівняння . Саме, при Ch>>1 "швидкі" змінні експоненциально вибуваєть, причому швидкість вибування абсолютно не залежить від величини C: x(t+h)=x(t)/3. Отже стійкість гарантована, але сподіватися на правильний опис еволюції "швидких" змінних не доводиться.

Повний алгоритм рішення системи ОДУ з адаптивною зміною кроку будується на основі цього рецепту таким самим чином, як будувався повний алгоритм в звичайному (явному) методі Рунге-Кутта п'ятого по-рядка. Єдина модифікація полягає в тому, що міри "1/4" і "1 /5", відповідна п'ятому порядку точність явної схеми, належить замінити на мірі "1/3" і "1/4", відповідна четвертому порядку точність неявної схеми.

Необхідно також нагадати, що для "жорсткої" системи ОДР перетворити вектор Е в одне число 6, що оцінює погрішність, набагато важче, чим для звичайної системи ОДР.



6. Неявні інтерполяційні схеми



Алгоритм неявних інтерполяційних методів дослівно повторює алгоритм звичайних (явних) інтерполяційних методів. Єдина відмінність полягає в тому, що ми не використовуємо звичайну (явну) схему Рунге-Кутта другого порядку:





Ми заміняємо її на неявну схему Рунге-Кутта другого порядку:



Нагадаємо, що для цієї схеми можна використовувати два різних рецепта:

  • шукати точне рішення цієї системи нелінійних рівнянь методом Ньютона;

  • обмежитися лінеаризованим рівнянням, тобто зробити тільки перший крок методу Ньютона :



У будь-якому випадку доведеться вирішувати СЛР. В більшості випадків можна обійтись другим варіантом, але в дуже нестійких завданнях доведеться вдатися до першого (до речі, при цьому не доведеться сильно міняти текст програми).

Нагадаємо, що існують варіанти інтерполяційного методу з фіксованим кроком Н і змінним порядком m, з фіксованому порядку те і змінним кроком Н і, нарешті, із змінними m і Н. Тут можна привечти тільки простий алгоритм з фіксованим H.

Алгоритм:

Вибираємо постійний крок H за часом (як правило слід брати H близько 0.2). Рухаємося по траєкторії з цим кроком. Кожен окремий крок реалізується так:

Для k = 1,2,.. виконуємо наступне:

Для чергового Nk з набору {4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128} обчислюємо крок hk = H/Nk.

За допомогою цього кроку hk знаходимо



тут tn = t+nhk, n = 0.. Nk-1; при цьому . Зрозуміло, тут не слід обчислювати зворотну матрицю, потрібно просто вирішувати СЛР.

Для кожного хі по k точок:



виконуємо поліноміальну інтерполяцію взалежності Y(X) в точку X = 0. Результат інтерполяції, отриманий на k -му етапі, означаємо . Оцінюємо погрішність



як



Перетворюємо вектор на число характеризуючи погрішність. Якщо менше замовленого те вважаємо і завершуємо даний крок tt+H.

Перша неприємна відмінність від явного методу полягає в тому, що кожен маленький крок на hk (великий крок H складається з Nk штук таких кроків) вимагає рішення СЛР.

Друга неприємна відмінність від явного методу полягає в тому, що тут набагато складніше перетворити вектор на одне число , оцінюючи погрішність. На жаль, рецепт цього перетворення слідує підібрати залежно від конкретного завдання, тобто від конкретних властивостей "швидких" і "повільних" змінних.

На перший погляд, цей алгоритм приведе не просто до багатьох помилок в описі динаміки "швидких" змінних, а до помилок якісних. Дійсно, якщо рівняння для "швидкої" змінної має вигляд , то при Ch>>1 неявна схема Рунге-Кутта другого порядку замість експоненціального вибуває дає x(t+h)≈-x(t), тобто |x(t+H)|≈|x(t)|. На щастя, наступна інтерполяція виправляє ситуацію. Інтерполяційний алгоритм "помічає", що у міру зменшення hk абсолютна величина x(k)(t+H) зменшується. Причому це зменшення тим помітніше, чим менше hk - В результаті остаточна відповідь буде помітна менше за абсолютною величиною, чим x(t).

7. Програма Рунге-Кутта на мові С#

Наведемо приклад пограми Рунге-Кутта на мові С#. В програмі використовується абстрактний клас TrungeKutta, в якому потрібно перекрити абстрактний метод F, який задає перші чаcтини рівняння.



using System;

using System.Collections.Generic;

namespace rwsh_rk4

{

abstract class TRungeKutta

{

public int N;

double t; // теперішній час

public double[] Y; // шукане число Y[0] – саме рішення, Y[i] - i-та змінна розвязку

double[] YY, Y1, Y2, Y3, Y4; // внутрішня змінна

public TRungeKutta(int N) // N – розмір системи

{

this.N = N; // зберегти розміри системи

if (N < 1)

{

this.N = -1; // якщо розмірність менше одиниці, то установити флаг помилки

return; // і вийти із конструктора

}

Y = new double[N]; // створення вектора розв’язку

YY = new double[N]; // внутрішній розв’язок

Y1 = new double[N];

Y2 = new double[N];

Y3 = new double[N];

Y4 = new double[N];

}

public void SetInit(double t0, double[] Y0) // встановлення початкових умов.

{ // t0 – початковий час, Y0 – початкова умова

t = t0;

int i;

for (i = 0; i < N; i++)

{

Y[i] = Y0[i];

}

}

public double GetCurrent() // повернути даний час

{

return t;

}

abstract public void F(double t, double[] Y, ref double[] FY); // перші частини с-ми.

public void NextStep(double dt) // наступний крок метода Рунге-Кутта, dt – крок по часу

{

if(dt<0)

{

return;

}

int i;

F(t, Y, ref Y1); // вирахувати Y1

for (i = 0; i < N; i++)

{

YY[i] = Y[i] + Y1[i] * (dt / 2.0);

}

F(t + dt / 2.0, YY, ref Y2);

for (i = 0; i < N; i++)

{

YY[i] = Y[i] + Y2[i] * (dt / 2.0);

}

F(t + dt / 2.0, YY, ref Y3); // вирахувати Y3

for (i = 0; i < N; i++)

{

YY[i] = Y[i] + Y3[i] * dt;

}

F(t + dt, YY, ref Y4); // вирахувати Y4

for (i = 0; i < N; i++)

{

Y[i] = Y[i] + dt / 6.0 * (Y1[i] + 2.0 * Y2[i] + 2.0 * Y3[i] + Y4[i]); // виразувати р-зок на новому кроці

}

t = t + dt; // збільшити крок

}

}

class TMyRK : TRungeKutta

{

public TMyRK(int aN) : base(aN) { }

public override void F(double t, double[] Y, ref double[] FY)

{

FY[0] = Y[1]; // приклад математичний маятник

FY[1] = -Y[0]; // y''(t)+y(t)=0

}

}

class Program

{

static void Main(string[] args)

{

TMyRK RK4 = new TMyRK(2);

double[] Y0 = {0, 1}; // задаємо початкові умови y(0)=0, y'(0)=1

RK4.SetInit(0, Y0);

while (RK4.GetCurrent() < 10) // розв’язуєм до 10

{

Console.WriteLine("{0}\t{1}\t{2}", RK4.GetCurrent(), RK4.Y[0], RK4.Y[1]); // вивести t, y, y'

RK4.NextStep(0.01); // розв’язати на наступному кроці, крок інтегрування dt=0.01

}

}

}

}



8. Програма Beeman



У програмі Вееman моделюється осцилятор Морза з допомогою алгоритму Бімана. Оскільки цей алгоритм не самостартуючий, то для всіх - числових значень х(, і використовується швидкісна форма алгоритму Верле.

PROGRAM Beeman І моделювання осцилятора Морза

CALL initialfx, v, aold, dt, dt2, nmax)

CALL energy(x, v, ecum, e2cum) 1 значення початкової енергії

CALL Verleg x, v, a, aold, dt, dt2) CALL energy{ x, v, ecum, e2cum) LET n = 1

DO whiie n < nmax

LET n = n + 1 1 число кроку

CALL Bceman{x, v, a, aold, dl, dl2)

І образування повної знергії після кожного кроку за часом CALL energY(x, v, ecum, e2cum) LOOP

CALL output{ ecum, e2cum, n) END

SUB initial( x, v, aold, dt, dt2, nmax) DECLARE DEF f LET х = 2 LET v = 0 LET aold = f(x)

INPUT prompt "крок по часу (c) = ": dt LET dt2 = dt" dt

INPUT prompt "тривалість = ": tmax LET nmax = tmax/dt END SUB

SUB Ver!et( x, v, a, aold, dt, dt2) DECLARE DEF f

LET x = x + v*dt + 0.5*ao!d*dt2 LET a = f(x)

LET v = v + 0.5"{a + ao!d)*dt END SUB

SUB Beeman(x, v, a, aold, dt, dt2) DECLARE DEF f

LET x = x + v*dt + (4*a - aold)*dt2/6

LET anew = f(x) І значення на (п+1) -му кроці LET v = v + (2*anew + 5*a - aold)*dt/6

LET aold = a значення на (n-1) -му кроці

LET а = anew значення на n-му кроці END SUB

DEF f(x) LET e = exp(- x) LET f = 2*e*(e - 1) END DEF

SUB energY(x, v, ecum, e2cuin) LET KE = 0.5*v" v LET e = exp(- x) LET PE = e*{e - 2) LET etot = KE + PE LET ecum = ecum + etot LET e2cum = e2cum + etot*etot END SUB

SUB output{ecum, e2cuiT!, n) LET n = n + 1 І вирахування початкового значення

LET ebar = ecum/n PRINT "середня енергія = ";ebar LET sigma2 = e2cum/n - ebar*ebar PRINT "sigma = "; sqr(sigma2) END SUB



Метод Адамса



Цей метод чисельного інтегрування розроблений Адамсом в 1855 році на прохання видомого англійського алтелериста Башфора, який займався внутрішньою балістикою. В подальшому цей метод був забутий і знову відкритий був норвезьким математиком Штермером. Популяризація метода Адамса і подальше його вдосконалення пов’язане із іменем Крилова.

Запишемо рівняння першого порядку



З початковими умовами (1,2)



Нехай xi(i=0,1,2…)-система рівнозначних значень з кроком h i y(xi). Очевидно маємо



(3)



В силу другої інтерполяційної формули Ньютона з точністб до різниць четвертого порядку отримуємо:



(4)

де або (4а)

Підставляю вираз (4а) в формулу (3) і враховуючи те, що будемо мати





З відси отримуємо формулу експоляриціональну Адамса



(5)



Для початкового процессу потрібно чотири початкових значення y0, y1, y2, y3, - початковий відрізок, який приділяє, виходячи із початкових умов (2), яким-небуть чисельним методом. Мажна наприклад використати метод Рунге-Кутта або розкласти в ряд Тейлора





Де i=1,2,3 (або i=-1,1,2) із відповідною зміною нумерування. Знаючи ці значення, із рівнянь (1) можна знайти значення похідних і скласти таблицю



(6)



Подальше значення yi (i=4,5…) шуканого розвязку можна крок за кроком обчислювати за формулою Адамса, поповнюючи по мірі можливості таблицю різниць (6)

Вирахувавши перше наближення для по формулі

Визначити підрахувати кінцеві різниці



(7)



а потім знайти друге наближення для більш точній формулі



(8)

Якщо і відрізняються лишень на дкілька одиниць останнього зберігаючого десяткового розряду, то можна поставити а потім знайшовши перерахувавши кінцеві різниці (7). Після цього, потрібно знову знайти по формулі (8) Поту цей крок h повинен бути таким, щоб цей перерахунок був зміненим.

На практиці крок h вибирають малим, щоб можна було знехтувати членом в формулі (8)

Якщо за розбіжність величин і суттєва, то потрібно зменшити крок h.

Звичайно крок h зменшують рівно в 2 рази. Можна показати, як в цьому випадку, маючи до деякого значення і таблицю величин хj, yj, Yj=hyj (j<=i) з кроком , можна просто побудувати таблицю величин з кроком

На основі формули (4) будемо мати

(9)

Де Звідси, і і враховуючи, що заходимо



(10)



Аналогічно при із формули (9) отримаєм, що аргументу відповідає значення



(11)



Що стосується значень Yi-1 i Yi, то вони знаходяться в старій таблиці. Після цього складаємо початковий відрізок для нової таблиці:





і знаходимо кінцеві різниці:





Далі таблиця будується простим способом, подальшою модифікацією формули (5):





Для роботи на компютерах формулу Адамса (5) вигідно використовувати в розкритому виді. Враховуючи, що





Після цього маємо: причому

Метод Крилова



Для спрощеня запису обмежимось розглядом диференціальних рівнянь першого порядка



(1)



З початковими умовами

Введемо спочатку ряд допоміжних формул

В силу формули Адамса отримаємо



(2)



Введемо позначення

Формула (2) називається формулою похилого рядка, так як в ній використовуються різниці, які знаходяться на діагоналі таблиці різниць. Враховуючи, що

Із формули (2) будемо мати





Звідси отримуємо першу допоміжну формулу – яку ще можна назвати перша формула ламаного рядка



(3)



Далі враховуючи, що і із формули (3) виводимо другу формулу – друга формула ламаного рядка



(4)



Якщо отримаємо формулу горизонтального рядка



(5)



Підмітимо, що формулу (5) можна отримати безпосередньо за допомогою інтегрування, в межах від xi до xi+1 розкладанням за допомогою першої інтерполяційної формули Ньютона:





Перейдемо до опису метода Крилова послідовних наближень. Перше наближення полягає у тому, щоб знайти наближене значення

Після цього знайдемо і складає різницю , де .

Значення які знайшли заносимо в розділ (І) основного бланку (таблиця 1)



Схема обчислення відрізка методом послідовних наближень

№ наближення

і

x

y

І

0

1

x0

x1

ІІ

0

1

2

x0

x1

x2

ІІІ

0

1

2

3

x0

x1

x2

x3



Далі переходимо до другого наближення. Для того, використовуємо дані із знаходження ламаних рядків, обчислюємо значення і :



(7)

(8)



Двочленні формули отримуються відповідно із формули (5) при і=0 і із формули (2) при і=1 в результаті відкидання різниць порядка вищого ніж перший.

Таким чином, отримаємо можливість знайти

і ,



в результаті чого можна порахувати



і скласти різниці



Отримані результати записуємо у таблицю в розділ 2 основного бланка

Для знаходження третього наближення застосовуємо трьохчленні формули, які отримуються із формули (2) при і=2 після відкидання різниць третього порядку. Обчислюємо значення із трьохчленних формул:



(9)

(10)

(11)

Звідси можна знайти



і обчислити . Після цього можна заповнити розділ ІІІ в таблиці (І) знайшовши потрібні різниці звичайним порядком.



Метод Чаплигіна

Метод Чаплигіна є одним із найбільш точним із аналітичних методів наближеного інтегрування диф. рівнянь причому допускаючи просту оцінку погрішності. Суть полягає у тому, що шуканий розв’язок апроксимуючись двома послідовними функціями





задовольняючи подвійну нерівність



і початковими умовами причому такими, що на при . Геометрично це означає, що шукана інтегральна крива стискається в як завгодно малий криволінійний сектор А0ВnCn (мал. 1).

Я кщо положити

то максимальна абсолютна погрішність наближеного розв’язку буде рівна ця погрішність на кожному кроці визначається безпосередньо.

Покажемо ідею метода Чаплигіна для диф. рівнянь першого порядку



(1)

з початковою умовою

(2)



Причому будемо мати на увазі, що права частина непереривна і має неперервні похідні і в деякому околі початкової точки . Метод побудований на одній лемі.

Лема Чаплигіна про інтегральні нерівності.

Нехай - диференціальний оператор, який відповідає диференціальному рівнянню (1), і інтеграл рівняння (1)



(3)



яке задовольняє початкову умову і вибраний при .

Якщо функція задовольняючи умови:



(4)

і

то на відрізку виконується нерівність

(5)

так чи однаке функція і являється наближеним розв’язком .

Аналогічно і для функції виконуються умови:

(6)

то на відрізку має місце нерівність , (7)

так чи однаке функція являється верхнім наближеним розв’язком у.



Доведення: Достатньо доказати лиш одне із нерівностей (5) або (7). Доведемо наприклад нерівність (5). Із формул (3) і (4) маємо і Звіди



(8)

Де

(9)



Функція втрачає зміст при х, для якого . В цьому випадку



В силу наведених вище умов функція р(х) визначена і неперервна на відрізку .

Помножимо обидві частини диференціальної нерівності (8) на інтегруючий множник будемо мати



(10)



Звідси інтегруючи нерівність (10) в межах від до , де отримаєм , або так як то остаточно знаходимо при , що і потрібно було довести.

194-Чисельні методи



Висновок:



Недоліком деяких з алгоритмів, яквляється те, що деякі з них не мають амостарту, і необхідно використовувати другий алгоритм для отримання кількох пешрих точок фазовоо простору. Недоліком алгоритму Верле полягає в тому, що нова швидкість знаходиться по формулі вираховуванням близьких по величині чисел. Така операція обумовлює втрату значущих цифр і може привести до значного збільшеня погрішності округлення.

Як вже підкреслювалося, не слід віддавати перевагу одному якому-небудь алгоритму. Успіхи в комп'ютерній технології нині дозволяють легко експерементувати з різними алгоритмами для разнообразних динамічних систем.

Список використаної літератури:



  1. Х. Гулд, Я.Тобочник. Компьютерное моделирование в физике: часть1.

  2. В.А.Ильина, П.К. Силаев. Численные методы для физиков-теоретиков часть2. Москва, Ижевск 2004р.

  3. сайт http://uk.wikipedia.org/wiki/Метод_Рунге_—_Кутти

  4. И.С. Березин, Н.П. Жидков. Методы вычислений том. 2 Москва 1959р.

  5. Б.П. Демидович,И.А.Марон, З.Шувалова. Численные методы анализа. «Наука» Москва 1967р.



Характеристики

Тип файла
Документ
Размер
3,51 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее