86352 (612730), страница 5

Файл №612730 86352 (Нестандартный анализ) 5 страница86352 (612730) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Аналогично определяются и гипердействительные ана­логи для функций нескольких аргументов. Пусть, напри­мер, f – функция двух действительных аргументов с дей­ствительными значениями. Определим ее гипердействительный аналог *f. Чтобы применить *f к двум гипердействительным числам х и y, возьмем по­следовательности x0, x1, x2,… и y0, y1, y2,… , им принадлежа­щие, и в качестве *f(х, у) рассмотрим класс последова­тельности f(x0,y0), f(x1,y1), f(x2,y2),… Определение корректно.

Нужно проверить, что построенное гипердействительные аналоги будут продолжениями исходных функций с действительными аргументами и значениями. Это очевидно следует из определений. Проверим теперь, что вся­кая система уравнений и неравенств, имеющая гипердействительные решения, имеет и действительные решения. Пусть, на­пример, система

f(g(x,y),z)=z, h(x)h(y)

имеет гипердействительные решения x, y, z. Рассмотрим последовательности x0,x1,x2,…; y0,y1,y2,…; z0,z1,z2,…, при­надлежащие соответствующим классам эквивалентности. Тогда g(x0,y0), g(x1,y1),… принадлежит классу g(x,y), а f(g(x0,y0),z0), f(g(x1,y1),z1),… – классу f(g(x,y),z). Поскольку x,y,z по предположению являются решения­ми системы, то f(g(xn,yn),zn)=zn для большинства п. Поскольку h(x)h(y), последовательности h(x0),h(x1),… и h(y0),h(y1),… не эквивалентны и множе­ство тех п, при котором h(xn)=h(yn) малое. Тогда мно­жество тех п, при котором h(xn)h(yn) является боль­шим. Так как пересечение двух больших множеств является большим, то множество тех n, при котором

f(g(xn,yn),zn)=zn , h(xn)h(yn)

является большим. Значит, оно непусто. Таким образом, система имеет и действительные решения.

Осталось проверить, что среди гипердействительных чисел существуют бесконечно малые, отличные от нуля. Положительным бесконечно малым гипердействительным числом будет, например, класс последовательности 1, 1/2, 1/3, .,. (или любой другой последовательности положи­тельных действительных чисел, сходящейся к 0). Нам нужно проверить, что это гипердействительное число (обозначим его через ) положительно, но меньше любого стандартного положительного числа. Чтобы доказать это, мы должны вспомнить, как определяется порядок на мно­жестве гипердействительных чисел. Он определяется в со­ответствии с общей схемой построения гипердействительного аналога для любого отношения на множестве дей­ствительных чисел. Нужно взять функцию f двух дей­ствительных аргументов, для которой свойства f(x,y)=0 и х<у равносильны, и рассмотреть ее гипердействительный аналог *f. Гипердействительное число х называется меньшим гипердействительного числа у, если *f(x,y)=0. Посмотрим, что дает нам эта конструкция для построен­ной описанным способом системы гипердействительных чисел. Если х – класс последовательности x0,x1,x2,…, а y – класс последовательности y0,y1,y2,…, то *f(x,y) есть класс последовательности f(x0,y0), f(x1,y1), f(x2,y2), … Равенство этого класса нулю (т. е. классу последовательности 0, 0, 0, ...) означает, что f(xn,yn)=0 для большинства n, т. е. что xnп. Таким образом, чтобы выяс­нить, верно ли х<у для гипердействительных чисел х и y, нужно взять последовательности x0,x1,x2,…, и y0,y1,y2,… в классах х и у и выяснить, является ли множество тех п, при которых xn

Нам нужно было проверить, что 0< и что для любого стандартного положительного р ( —класс последовательности 1, 1/2, 1/3, ...). Это просто:

0<, так как 0<1/п при всех п (а множество N большое), <р, так как 1/n<р для всех натураль­ных n, кроме конечного числа, а всякое множество с ко­нечным дополнением малое (свойство 6 “системы подсче­та голосов”). Отметим, что здесь мы впервые воспользо­вались свойством 6, до сих пор все наши рассуждения были справедливы и в случае “диктатуры” (когда боль­шими считаются те и только те множества, которые со­держат некоторое натуральное число N). В этом случае две последовательности эквивалентны, если совпадают их N-е члены, и все гипердействительные числа стандартны (класс последовательности x0,x1,x2,… совпадает со стан­дартным числом xN).


ЛИТЕРАТУРА

1. Успенский В.А. Что такое нестандартный анализ? – М., Наука, 1987. – 128с.

2. Девис М. Прикладной нестандартный анализ. – М., Мир, 1980.

3. Успенский В.А. Нестандартный, или неархимедов, анализ. – М., Знание, 1983. 61 с. (Новое в жизни, науке, технике. Сер. “Математика, кибернетика” № 8 ).

4. Успенский В.А. Нестандартный анализ // Наука и жизнь, 1984. – №1. – с. 45-50.

5. Робинсон А. Введение в теорию моделей и математику алгебры. пер. с англ. – М., Наука, 1967.

Характеристики

Тип файла
Документ
Размер
303,95 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее