86352 (612730), страница 2

Файл №612730 86352 (Нестандартный анализ) 2 страница86352 (612730) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Приложения нестандартного анализа в математике охватывают обширную область от топологии до теории дифференциальных уравнений, теории мер и вероятностей. Что касается внематематических приложений, то среди них мы встречаем даже приложения к математической экономике. Многообещающим выглядит использование нестандартного гильбертова пространства для построения квантовой механики. А в статистической механике становится возможным рассматривать системы из бесконечного числа частиц. Помимо применений к различным областям математики, исследования в области нестандартного анализа включают в себя и исследование самих нестандартных структур.

В 1976 г. вышли сразу три книги по нестандартному анализу: “Элементарный анализ” и “Основания исчисления бесконечно малых” Г. Дж. Кейслера и “Введение в теорию бесконечно малых” К. Д. Стройана и В. А. Дж. Люксембурга.

Быть может, наибольшую пользу нестандартые методы могут принести в области прикладной математики. В 1981 г. вышла книга Р. Лутца и М. Гозе “Нестандартный анализ: практическое руководство с приложениями”. В этой книге после изложения основных принципов нестандартного анализа рассматриваются вопросы теории возмущений.

В настоящее время нестандартный анализ завоёвывает всё большее признание. Состоялся ряд международных симпозиумов, специально посвященных нестандартному анализу и его приложениям. В течении последнего десятилетия нестандартный анализ (точнее, элементарный математический анализ, но основанный на нестандартном подходе) преподавался в ряде высших учебных заведений США.

3. БЕСКОНЕЧНО МАЛЫЕ ВЕЛИЧИНЫ

Один из наиболее принципиальных моментов нестандартного анализа состоит в том, что бесконечно малые рассматриваются не как переменные величины (т. е. не как функции, стре­мящиеся к нулю, как учат современные учебники), а как величины постоянные. Та­кой подход хорошо согласуется как с интуицией естест­воиспытателя, так и с реальной историей зарождения математического анализа. Что касается интуиции, то до­статочно раскрыть любой учебник физики, чтобы натолк­нуться на бесконечно малые приращения, бесконечно малые объемы и т.п. Все эти величины мыслятся, разуме­ется, не как переменные, а просто как очень маленькие, почти равные нулю. Было бы неправильно считать по­добного рода интуицию присущей лишь авторам учебни­ков физики. Вряд ли какой-то математик воспринимает (наглядно) элемент дуги ds иначе, чем “очень маленькую дугу”. Любой математик, составляя соответствующее дифференциальное уравнение, скажет, что за бесконечно малое время dt точка прошла бесконечно малый путь dx, а количество радиоактивного вещества изменилось на бесконечно малую величину dN.

Что же касается истории математического анализа, то в наиболее явной форме излагаемый подход проявил­ся у одного из основоположников этой науки — Лейбни­ца. В мае 1984 г. исполнилось 300 лет с того дня, как символы dx и dy впервые появились на страницах мате­матических публикаций, а именно в знаменитом мемуаре Лейбница “Новый метод...”. Именно Лейбниц яснее других ощущал бесконечно малые величины постоянны­ми (хотя и воображаемыми, идеальными) величинами особого рода, и именно Лейбниц сформулировал правила оперирования с бесконечно малыми в виде ис­числения.

Какие положительные числа следует называть бесконечно малыми?

Первый ответ таков: положитель­ное число называется бесконечно малым, если оно меньше всех положительных чисел. Однако бесконечно малых в этом смысле положитель­ных чисел не бывает: ведь если число меньше всех положительных чисел и само положительно, оно должно быть меньше самого себя. Попытаемся исправить поло­жение, потребовав, чтобы было меньше всех других

положительных чисел, но больше нуля, т. е. чтобы было наименьшим в множестве положительных чисел. На числовой оси такое должно изобразиться самой левой точкой множества (0, +). К сожалению, числа с указанными свойствами тоже нет и не может быть: если положительно, то число /2 будет положительным числом, меньшим . (Согласно обычным свойствам неравенств для всякого а > 0 выполняются неравенства 0 < а/2 < а). Так что если мы не хотим отказываться от при­вычных нам свойств действительных чисел (напри­мер, от возможности разделить любое число на 2 или от возможности умножить любое неравенство на положи­тельное число), но хотим иметь бесконечно малые чис­ла, то приведенное определение бесконечной малости не годится.

Более изощренное определение бесконечной малости числа > 0, которое мы будем использовать в дальней­шем, таково. Будем складывать число с самим собой, получая числа , + , + + , + + + и т. д. Ес­ли все полученные числа окажутся меньше 1, то число и будет называться бесконечно малым. Другими слова­ми, если бесконечно мало, то сколько раз ни отклады­вай отрезок длины вдоль отрезка длины 1, до конца не дойдешь. Наше требование к бесконечно мало­му можно переписать и в такой форме (поделив на ): 1<1/, 1+1<1/, 1+1+1<1/,…

Таким образом, если число число бесконечно мало, то число 1/ бесконечно велико в том смысле, что оно больше любого из чисел 1, 1+1, 1+1+1, 1+1+1+1 и т. д. Так что если мы начнем измерять отрезок длиной 1/ с помощью эталона длины (т.е. откладывая последовательно отрезки единичной длины), то процесса измерения никогда не закончим.

Из вышеизложенного следует, что существование бесконечно малых противоречит так называемой аксиоме Архимеда, которая утверждает, что для любых двух отрезков А и В можно отложить меньший из них (А) столько раз, чтобы в сумме полу­чить отрезок, превосходящий по длине больший отрезок (В).

Приведенная формулировка касается отрезков; если считать (как это обычно делается), что длины отрезков являются числами, мы приходим к такой формулировке аксиомы Архимеда: для любых двух чисел а и b, для ко­торых 0 < а < b, одно из неравенств а + а > b, a + а + a > b, ... обязательно выполнено. В дальнейшем, говоря об аксиоме Архимеда, мы будем иметь в виду имен­но эту формулировку. Из нее видно, что в множестве действительных чисел (где эта аксиома выполняется) бесконечно малых нет: чтобы убедиться в этом, достаточ­но положить a=, b=1. Мы увидим в дальнейшем, что на самом деле аксиома Архимеда равносильна утвержде­нию об отсутствии бесконечно малых элементов, не рав­ных нулю.

Вывод – если мы хотим рассматривать бесконечно малые, нужно расширить множество R действительных чисел до некоторого больше­го множества *R. Элементы этого нового множества бу­дем называть гипердействительными числами. В нем аксиома Архимеда не выполняется и существуют беско­нечно малые (в смысле последнего определения) числа — такие, что сколько их ни складывай с собой, сумма будет все время оставаться меньше 1. Подобно тому как обыч­ный (или стандартный) математический анализ зани­мается изучением множества действительных чисел R, нестандартный анализ изучает множество гипердействи-тельных чисел *R. Полученные при этом результаты ис­пользуются для исследования свойств R. (Таким обра­зом могут быть получены “нестандартные” доказательст­ва свойств обыкновенных действительных чисел.)

Порядок на R архимедов, а на *R неархимедов: это значит, что в R аксиома Архимеда выполняется, а в *R не выполняется. По этой причине стандартный (обыч­ный) анализ, изучающий R, называется еще архимедо­вым, а нестандартный анализ, изучающий *R, называ­ют неархимедовым.

Для построения нестандартного анализа необхо­димо расширить множество действительных чисел до бо­лее широкого множества гипердействительных чисел.

Но прежде поговорим о самих действительных числах и их происхождении.

До сих пор мы предполагали известным по­нятие действительного числа. Понятие действительного числа имеет долгую историю, начавшуюся еще в древней Греции (о чем на­поминает название “аксиома Архимеда”) и закончившу­юся лишь в XIX веке. Самой первоначальной и основной числовой системой является, конечно, система натуральных чисел. Натуральных чисел, однако, оказывается мало: пы­таясь решить уравнение 3 + х = 2 в натуральных чис­лах, мы обнаруживаем, что оно не имеет решений и на­ше желание определить операцию вычитания оказывается неудовлетворенным. Поэтому мы расширяем множе­ство натуральных чисел до множества целых чисел. В этой процедуре для нас сейчас важно следующее: каким образом мы оп­ределим сложение и умножение на целых числах? То, что 2 + 2 == 4, можно увидеть, сложив две кучи по два яблока в одну. Но почему мы считаем, что (-2)+(-2)=(-4)? Почему мы считаем, что (-1)(-1)=1?

Эти вопросы не так тривиальны, как может показаться. Найти правильный ответ будет легче, если сформулировать вопрос иначе: что плохого произой­дет, если мы будем считать, например, что (-1)(-1)=(-1)? Ответ прост: в этом случае хорошо известные свой­ства сложения и умножения натуральных чисел (комму­тативность, ассоциативность и др.) не будут выполнять­ся для целых чисел. Можно показать, что обычное определение операций над отрицательными числами единственно возможное, если мы хотим сохранить привычные свойства операций сложения и умножения.

Тут следует остановиться: какие же именно свойства сложения и умножения мы хотим сохранить? Ведь если бы мы хотели сохранить все свойства, то введение отрицательных чисел было бы не только излишне, но и вредно: свойство “уравнение х+3=2 не имеет решений”, верное для натуральных чисел, становится неверным для целых! Если же мы ничего не хотим сохра­нить, то задача становится столь же легкой, сколь и пустой: можно определить операции с отрицательными числами как угодно.

Возвращаясь к истории развития понятия числа, мы видим, что введение отрицательных чисел не доставляет полного удовлетворения: уравнение 2x=3 по-прежне­му не имеет решения. Это побуждает ввести рациональ­ные (дробные) числа. Но и этого недостаточно: от раци­ональных чисел приходится перейти к действительным. В результате получается последовательность множеств NZQR (натуральных, целых, рациональных и действительных чисел; А В означает, что всякий элемент множества А принадлежит множеству B. В этой последовательности каждое следующее множество вклю­чает в себя предыдущее, при этом имевшиеся в предыду­щем операции продолжаются на следующее, более широкое, множество, сохраняя свои полезные свойства.

Мы хотим продолжить эту последовательность еще на одни член, получив последовательность NZQR*R, где *R – множество гипердействительных чисел. Новый шаг расширения будет иметь много общего с предыдущими: мы продолжим на *R имеющиеся в R операции, сохранив их полезные свойства. Но будут и 2 важных отличия.

Во-первых, если расширение (переход от R к *R) можно выполнить многими различными способами: можно построить существенно различные множества *R, ни одно из которых ничем не выделяется среди остальных. В то жо время, все предыдущие шаги нашего расширения число­вой системы от N к R были в некотором смысле од­нозначны.

Во-вторых, есть различие в наших целях. Ес­ли прежде (двигаясь от N к R) мы строили новую числовую систему прежде всего для того, чтобы иссле­довать ее свойства и ее применения, то построенная си­стема *R предназначается не столько для того, чтобы исследовать ее свойства, сколько для того, чтобы с ее помощью исследовать свойства R. Впрочем различие и не так велико: и раньше расширение числовой системы было одним из способов получения но­вых знаний о старых объектах. Кроме того, множество *R можно рас­сматривать, быть может, как соответствующее физиче­ской реальности в не меньшей (и даже в большей) сте­пени, чем R.

Итак, необ­ходимо расширить множество R действительных чисел до большего множества *R, содержащего бесконечно ма­лые, сохранив при этом все полезные свойства R. Цент­ральный вопрос состоит в том, какие именно свойства действительных чисел мы желаем со­хранить. Ответим на этот вопрос не сразу, начав с на­иболее простых свойств действительных чисел.

Прежде всего, мы хотим, чтобы гипердействительные числа можно было складывать, умножать, вычитать и делить, чтобы эти операции обладали обычными свойст­вами, называемыми «аксиомами поля». Сформулируем их.

Среди гипердействительных чисел должны быть выделены числа 0 и 1; определены операции сложения, умножения взятия противоположного, а также операция взятия обратного. При этом должны выполняться такие свойства:

(1) a+b=b+a (2) a+(b+c)=(a+b)+c (3) a+0=a (4) a+(-a)=0 (5) ab=ba

(6) a(bc)=(ab)c (7) a*1=a (8) a(b+c)=ab+ac (9) a*(1/a)=1 при a<>0.

Множество с операциями, обладающими этими свойствами, называется полем. Требования (1)-(9) можно сформулировать так: *R должно быть полем.

Кромеарифметических операций, зададим на гипердействительных числах порядок. Для любых двух различных гипердействительных чисел должно быть определено какое из них больше. При этои должны выполняться такие свойства:

(10) если a>b, b>c, то a>c

(11) если a>b, то a+c>b+c для любого с

(12) если a>b, c>0, то ac>bc

если a>b, c<0, то ac

Поле, в котором введен порядок с такими свойствами, называется упорядоченным полем. Требования (10)-(12) можно сформулировать так: *R должно быть упорядоченным полем.

Мы хотим, чтобы среди гипердействиетльных чисел были все действительные. При этом операции и порядок на R и на *R должны быть соглсованы. Это требование можно сформулировать так: упорядоченное поле *R должно быть расширением упорядоченного поля R.

Что же нового мы ожидаем от *R? Бесконечно малых.

Определение. Элемент >=0 упорядоченного поля называется бесконечно малым, если <1, +<1. ++<1 и т.д. Отрицательное называется бесконечно малым, если – бесконечно мало.

Существование ненулевых бесконечно малх равносильно нарушению аксиомы Архимеда для гипердействительных чисел. Упорядоченные поля, в которых справедлива аксиома Архимеда и нет бесконечно малых, называют архимедово упорядоченными. Те поля, в которых аксиома Архимеда невернаи есть бесконечно малые, называют неархимедово упорядоченными (неархимедовым).

В этих терминах треюования можно сформулировать так: система гипердействительных чисел должна быть неархимедово упорядоченным полем, являющимся расширением упорядоченного поля действительных чисел.

4. ГИПЕРДЕЙСТВИТЕЛЬНАЯ ПРЯМАЯ

Предположим, что неархимедово расширение упорядоченного поля действительных чисел существует. Исследуем его свойства.

Пусть *R – неархимедово расширение R. Его элементы называются гипердействительными числами. Среди них содержатся и все действительные числа. Для отличия тех гипердействительных чисел, которые не являются действительными (элементы R) назовем их стандартными, а остальнгые гипердействительные (элементы *R\R) – нестандартными. Тогда бесконечно малые являются нестандартными, так как среди действительных чисел бесконечно малых нет.

Бесконечно малые положительные числа меньше всех стандартных положительных чисел. Аналогичным образом отрицательные бесконечно малые числа больше всех стандартных отрицательных чисел. Таким образом, если пытаться изобразить бесконечно малые числа на числовой прямой, то пришлось бы втиснуть их настолько близко к нулю, чтобы все положительные стандартные числа оказались справа, а отрицательные – слева.

Указанное свойство может служить определением бесконечной малости: если число >0 меньше всех стандартных положительных чисел, то оно бесконечно мало.

Определение. Гипердействительное число А>0 называется бесконечно большим, если А>1, А>1+1, А > 1+1+1, .…(Отрицательное число В называется бесконечно боль­шим, если таков его модуль)

Положительное бес­конечно большое число А больше любого стандартного.

Аналогичным образом всякое отрицательное бес­конечно большое гипердействительное число меньше лю­бого стандартного.

Определение. Гипердействительные числа, не являющиеся бесконечно большими, будут называться конечными.

Утверждение. Если s – конечное гипердействительное число, то найдутся стандратное v и бесконечно малое , для которых s=v+. Такое представление единственно.

Определение. Стандартной частью st(x) конечного гипердействительного числа x называется такое стандартное v, что x=v+ для бесконечно малого .

Гипердействительная прямая разбивается на 3 части (слева направо): отрицательные бесконечно большие, конечные, положительные бесконечно большие. Рассмотрим «конечную часть» гипердейсьвительной прямой. Рядом с каждым стандартным действительным числом а расположено множество бесконечно близких к нему гипердействительных чисел, для которых а является стандратной частью. Это множество называют монадой стандартного числа а. Множество конечных гипердействительных чисел разбито на непересекающиеся классы – монады, соответствующие стандартным действительным.

Сумма и разность бесконечно малых бесконечно малы, произведение бесконечно малого и конечного гипердействительных чисел бесконечно мало.

Определение. Два гипердействительных числа называются бесконечно близкими, если их разность бесконечно мала.

Из приведенных выше свойств бесконечно малых следует, что отношение бесконечной близости есть отношение эквивалентности. Это означает, что отношение бесконечно близости рефлексивно (каждое x бесконечно близко самому себе), симметрично (если x бесконено близко к y, то y бесконечно близко к x) и транзитивно (если x бесконено близко к y, а y бесконечно близко к z, то x бесконечно близко к z). Всякое отношение эквивалентности разбивает множество, на котором оно определено на непересекающиеся классы, причем любые два элемента одного класса эквивалентны, а любые два элемента разных классов не эквивалентны. В частности, наше отношение разбивает *R на непересекающиеся классы, причем элементы одного класса бесконечно близ­ки друг к другу, а элементы разных классов — нет. Классы, содержащие стандартные действительные числа, представляют собой упоминавшиеся выше «монады».

5. ПРИМЕР НЕАРХИМЕДОВОЙ ЧИСЛОВОЙ СИСТЕМЫ

До сих пор речь шла о гипердействительной прямой (а точнее, любом неархимедовом расширении упоря­доченного поля действительных чисел). Возникает во­прос – существует ли хотя бы одно такое распшрение. Построим такое расширение.

Ос­новная идея этого построения может быть описана в од­ной фразе так: у нас нет объектов, но есть имена для них; так объявим же имена объектами! Эта (часто при­меняемая в математической логике) идея конкретизиру­ется в нашем случае следующим образом.

Характеристики

Тип файла
Документ
Размер
303,95 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее