86231 (612691), страница 2
Текст из файла (страница 2)
ІІІ - го: 120-150 m03=2/3 (20/30)
IV - го: 150-180 m04=1/2 (15/30)
Тогда количество рабочих (% к итогу) Завода 2, выполняющих норму на 140‑160% определяются так:
2/310+1/210=12.
Результаты перегруппировки представлены в таблице 5.
Таблица 5.
Группы рабочих по проценту выполнения норм выработки | Количество рабочих,% к итогу | |
Завод 1 | Завод 2 | |
До 100 | 5 | 8 |
100-110 | 50 | 20 |
110-120 | 30 | 20 |
120-140 | 8 | 13 |
140-160 | 7 | 12 |
160 и выше | - | 27 |
ИТОГО | 100 | 100 |
2. Основные характеристики и графическое изображение вариационного ряда
Для целей анализа и сравнительной характеристики различных рядов распределения применяются обобщающие показатели вариационного ряда. Систему показателей рассмотрим на примере.
Допустим, что по 5 производственным участкам известны данные о распределении 100 рабочих по квалификации (табл.6).
Таблица 6.
Разряд рабочих | Число рабочих участка | ||||
I | II | III | IV | V | |
2 | 20 | - | 10 | 1 | 5 |
3 | 60 | 20 | 20 | 9 | 10 |
4 | 20 | 60 | 40 | 80 | 6 |
5 | - | 20 | 20 | 9 | 15 |
6 | - | - | 10 | 1 | 10 |
Итого | 100 | 100 | 100 | 100 | 100 |
Распределения рабочих І-го и ІІ-го участков, имеют одинаковый размах вариации и характер распределения частично отличаются: величиной варьирующего признака, т.е. центром группирования.
Среднее квадратическое отклонение показывает также как расположена основная масса единиц совокупности относительно средней арифметической. В соответствии с теоремой Чебышева можно утверждать, что независимо от формы распределения 75% значений признака попадают в интервал ; а по крайней мере 89% всех значений попадают в интервал
Необходимо отметить, что если при расчете арифметической для достаточно симметричного ряда распределения м/д не оказывают существенного влияния на ее отклонение от средней арифметической, рассчитанной по первичным данным, то при расчете дисперсии этот факт приводит к появлению систематической ошибки.
В.Ф. Шеппард установил, что ошибка в дисперсии, вызванная применением сгруппированных данных при расчете составляет 1/12 квадрата величины интервала, т.е. скорректированная дисперсия равна
І группа обобщающих показателей - характеристика центра группирования в качестве которых используют: среднюю арифметическую,
моду;
медиану.
Распределение рабочих ІІ-го и ІІІ-го участков имеют один и тот же центр группирования и симметричное расположение частот вокруг него, но отличаются пределами вариации.
ІІ группа - показатели степени вариации - т.е. характеристика колеблемости признака.
Распределение рабочих ІІІ-го и IV-го участков имеют и тот же центр группирования, пределы варьирования признака, симметричный характер ƒ расположения частот, но имеют разную степень вытянутости вдоль оси ординат, которая характеризуется показателями эксцесса.
Распределение рабочих IV-го и V-го участков показывает, что они отличаются характером распределения частот относительно центра. Для IV-го участка оно симметрично, для V-го участка оно не симметрично.
Степень отклонения от симметричной формы характеризуется показателями асимметрии.
ІІІ группа показателей - показатели формы распределения.
Графическое изображение рядов расширения облегчает их анализ и позволяет судить о форме распределения. Для графического изображения дискретного ряда применяют полигон распределения. На оси абсцисс отмечают точки, соответствующие величине варианты признака. Из них восстанавливаются перпендикуляры, высота которых - частости этих вариантов. Вершины перпендикуляров соединяются отрезками прямых. Крайние вершины соединяются с точками на оси абсцисс, отстоящими на одно деление от xmax и xmin.
Для графического изображения интервальных вариационных рядов применяется гистограмма.
Она строится так, что на оси абсцисс откладываются равные отрезки, которые соответствуют величине интервалов вариационного ряда. На отрезках строят прямоугольники, площади которых пропорциональны частотам (частостям) интервала.
П о данным табл.1 построим полигон распределения.
f | ||||||||
8 | ||||||||
7 | ||||||||
6 Распределение рабочих участка по квалификации: X – тарифный разряд f – число рабочих | ||||||||
5 | ||||||||
4 | ||||||||
3 | ||||||||
2 | ||||||||
1 | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | x |
По данным табл.2 построим гистограмму ряда распределения предприятий по стоимости основных фондов.
f | ||||||||
6 | ||||||||
5 Распределение по размеру прибыли: - средняя годовая стоимость ОФ f – число предприятий | ||||||||
4 | ||||||||
3 | ||||||||
2 | ||||||||
1 | ||||||||
3,7 | 4,6 | 5,5 | 6,4 | 7,3 | 8,2 |
|
Гистограмма может быть преобразована в полигон распре деления, для чего середины верхних сторон прямоугольников соединяют отрезками прямых. Две крайние точки прямоугольников замыкаются по оси абсцисс на середины интервалов, в которых частоты равны 0.
При увеличении числа наблюдений совокупности увеличивается число групп интервального ряда, что соответственно приводит к уменьшению величины интервала. При этом ломанная линия будет иметь тенденцию превращения в плавную кривую, которую называют кривой распределения. Она характеризует в обобщенном виде вариацию признака и распределение частот внутри однокачественной совокупности.
В ряде случаев для изображения вариационных рядов используется кумулятивная кривая (кумулянта). Построим кумулятивную кривую по данным табл.2 о распределении банков по размеру прибыли. Накопленные частоты рассчитаны в графе 3 табл.2.
При построении кумулянты интервального ряда распределения нижней границе первого интервала соответствует частота, равная 0, а верхней границе - вся частота данного интервала. Верхней границе второго интервала соответствует накопленная частота, равная сумме частот первых двух интервалов и т.д.
S | ||||||||
2 | ||||||||
16 | ||||||||
12 | ||||||||
8 | ||||||||
4 | ||||||||
3,7 | 4,6 | 5,5 | 6,4 | 7,3 | 8,2 |
|
Изображение вариационного ряда в виде кумулянты особенно удобно при сравнении вариационных рядов, а так же в экономических исследованиях, в частности для анализа концентрации производства
3. Показатели центра распределения
Для характеристики среднего значения признака в вариационном ряду используются средняя арифметическая, мода и медиана.
Общие понятия о средних величинах и их свойствах рассматривались в предыдущей лекции. Здесь же мы рассмотрим расчет показателей центра распределения для вариационных рядов.
Напоминаю, что средняя арифметическая рассчитывается по формуле: