86136 (612658), страница 5
Текст из файла (страница 5)
Степенная модель множественной регрессии имеет вид:
В степенной функции коэффициенты при факторах являются коэффициентами эластичности. Коэффициент эластичности показывает на сколько процентов измениться в среднем значение результативного признака у, если один из факторов увеличить на 1 % при неизменном значении других факторов.
Если объем капиталовложений увеличить на 1%, то выручка предприятия увеличиться в среднем на 0,897% при неизменных размерах основных производственных фондов.
Если основные производственные фонды увеличить на 1%, то выручка предприятия уменьшиться на 0,226% при неизменных капиталовложениях.
-
РАССЧИТАЕМ:
коэффициент множественной корреляции:
Связь выручки предприятия с объемом капиталовложений и основными производственными фондами тесная.
Таблица 13
Вспомогательные вычисления для нахождения коэффициента множественной корреляции, коэффициента детерминации, ср.относ.ошибки аппроксимации степенной модели множественной регрессии
Y | X1 | X2 | Y расч. | (Y-Yрасч.)2 | (Y-Yср)2 | A |
3,0 | 1,1 | 0,4 | 2,978 | 0,000 | 0,020 | 0,007 |
2,9 | 1,1 | 0,4 | 2,978 | 0,006 | 0,058 | 0,027 |
3,0 | 1,2 | 0,7 | 2,838 | 0,026 | 0,020 | 0,054 |
3,1 | 1,4 | 0,9 | 3,079 | 0,000 | 0,002 | 0,007 |
3,2 | 1,4 | 0,9 | 3,079 | 0,015 | 0,004 | 0,038 |
2,8 | 1,4 | 0,8 | 3,162 | 0,131 | 0,116 | 0,129 |
2,9 | 1,3 | 0,8 | 2,959 | 0,003 | 0,058 | 0,020 |
3,4 | 1,6 | 1,1 | 3,317 | 0,007 | 0,068 | 0,024 |
3,5 | 1,3 | 0,4 | 3,460 | 0,002 | 0,130 | 0,012 |
3,6 | 1,4 | 0,5 | 3,516 | 0,007 | 0,212 | 0,023 |
31,4 | 13,2 | 6,9 |
| 0,198 | 0,684 | 0,342 |
коэффициент детерминации:
71,06% изменения выручки предприятия в степенной модели обусловлено изменением объема капиталовложений и основных производственных фондов, на 28,94 % - влиянием факторов, не включенных в модель.
F – критерий Фишера
Проверим значимость уравнения
Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f.1 = k = 2, числе степеней свободы d.f.2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.
Так как Fрасч. = 8,592 > Fтабл. = 4.74, то уравнение степенной регрессии в целом можно считать статистически значимым.
среднюю относительную ошибку аппроксимации
В среднем в степенной модели расчетные значения отличаются от фактических на 3,42 %. Ошибка небольшая, модель можно считать точной.
-
СОСТАВИМ СВОДНУЮ ТАБЛИЦУ ВЫЧИСЛЕНИЙ (табл. 14)
Таблица 14
Параметры | Модель | ||
линейная | степенная | ||
| | ||
Коэффициент множественной корреляции | 0,8235 | 0,8429 | |
Коэффициент детерминации | 0,6782 | 0,7106 | |
F – критерий Фишера | 7,375 | 8,592 | |
Средняя относительная ошибка аппроксимации, % | 3,53 | 3,42 |
В целом модели имеют примерно одинаковые характеристики. Но лучшей считается степенная модель, т.к значение коэффициента корреляции, индекса детерминации, F – критерия Фишера немного больше, а средняя относительная ошибка аппроксимации немного меньше, чем у линейной модели.
-
НАЙДЕМ ЧАСТНЫЕ КОЭФФИЦИЕНТЫ ЭЛАСТИЧНОСТИ И β – КОЭФФИЦИЕНТЫ
Для нахождения частных коэффициентов эластичности составим частные уравнения регрессии, т.е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором х при закреплении других учитываемых во множественной регрессии на среднем уровне.
и т.д.
Результаты расчетов представлены в таблице 15.
Таблица 15
Вспомогательная таблица для вычисления частных коэффициентов эластичности
Y | X1 | X2 | Э(ух1) | Э(ух2) |
3,0 | 1,1 | 0,4 | 0,524 | -0,135 |
2,9 | 1,1 | 0,4 | 0,524 | -0,135 |
3,0 | 1,2 | 0,7 | 0,545 | -0,262 |
3,1 | 1,4 | 0,9 | 0,583 | -0,364 |
3,2 | 1,4 | 0,9 | 0,583 | -0,364 |
2,8 | 1,4 | 0,8 | 0,583 | -0,311 |
2,9 | 1,3 | 0,8 | 0,565 | -0,311 |
3,4 | 1,6 | 1,1 | 0,615 | -0,484 |
3,5 | 1,3 | 0,4 | 0,565 | -0,135 |
3,6 | 1,4 | 0,5 | 0,583 | -0,174 |
Бета коэффициент рассчитываем по формуле:
- среднее квадратическое отклонение.
Необходимые вычисления для расчета СКО представлены в таблице 9.
Если объем капиталовложений увеличить на величину своего СКО, т.е. 0,147 млн. руб., то выручка предприятия увеличится на 1,302 величины своего СКО, т.е. на 1,302 * 0,262 = 0,341 млн. руб.
Если основные производственные фонды увеличить на величину своего СКО, т.е. на 0,239 млн. руб., то выручка предприятия уменьшится на 1,068 своего СКО, т.е. на 1,068 * 0,262 = 0,280 млн. руб.
-
ПО ЛИНЕЙНОЙ МОДЕЛИ РЕГРЕССИИ СДЕЛАЕМ ПРОГНОЗ НА СЛЕДУЮЩИЕ ДВА ГОДА показателя у (выручка), в зависимости от х1 (объема капиталовложений) и х2 (основных производственных фондов).
Прогнозные значения факторов можно получить, используя метод прогнозирования с помощью среднего абсолютного прироста:
,
где - средний абсолютный прирост, рассчитываемый по формуле:
;
k – период упреждения;
n – количество наблюдений.
, тогда
Х1, 11 = 1,4 + 1 ∙ 0,0333 = 1,4333 (млн.руб.)
Х1, 12 = 1,4 + 2 ∙ 0,0333 = 1,4667(млн.руб.)
Х2, 11 = 0,5 + 1 ∙ 0,0111 = 0,5111