86121 (612655), страница 2

Файл №612655 86121 (Теорема Дирихле) 2 страница86121 (612655) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

является аналитической функцией (по теореме Вейерштраса) в области ReS >.

Из представления (2.5) следует теперь, что L (S, x) есть аналитическая функция в полуплоскости ReS >, а ввиду произвольности S – и b полуплоскости ReS > 0.

Следствие. Пусть (n) – произвольный характер. Тогда в области ReS > 1 справедливо равенство

(2.7)

Это следует из того, что ряд (2.1) по доказанному равномерию сходится в области ReS>1+, где >0. Следовательно, по теореме Вейштрасса о равномерно сходящихся рядах аналитических функций в этой области ряд (2.1) можно почленно дифференцировать

Поэтому в полуплоскости ReS>1+ выполняется равенство (2.7). Так как в этом рассуждении -любое положительное число, то равенство (2.7) будет справедливо в полуплоскости ReS>1.

Для L-функций имеет место представление в виде бесконечного произведения по простым числам, аналогичное тождеству Эйлера. Рассмотрим вспомогательную Лемму.

Лемма 5. Пусть функция f(n) вполне мультипликативна и ряд

(2.8)

абсолютно сходится. Тогда выполняется равенство

(2.9)

Доказательство. Отметим прежде всего, что /f(n)/<1 при любом натуральном n>1. В противном случае при каждом m

/f(n)m/=/f(n)/m1,

что противоречит сходимости ряда (2.6). Поэтому при каждом простом р ряд

абсолютно сходится, и его сумма как сумма бесконечно убивающей геометрической прогрессии равна (1-f(р))-1. Кроме этого, в силу абсолютной сходимости, ряды можно перемножить. Перемножая конечное число таких рядов и используя то, что f(n) есть вполне мультипликативная функция, получим

где ne = p … ps и в сумме в правой части равенства содержатся такие и только такие слагаемые f(ne), что все просты делители ne не превосходят х. Следовательно, в разности

остаются те и только те слагаемые f(me), для которых у числа me имеется хотя бы один простой делитель р>x. Тогда оценим разность

/S-S(x)/

и из абсолютной сходимости ряда (2.8) следует, что

Это доказывает, что бесконечное произведение (2.7) сходится и выполняется утверждение Леммы.

Лемма 6. Для каждого характера (n) в области ReS > 1 справедливо представление

Доказательство. Эта лемма является следствием Леммы 5, поскольку функция (n) вполне мультипликативна, то есть (АВ)= (А) (В), и выполняется неравенство /(n)/ 1 по теореме 1.

Следствие 1. В области ReS > 1 для главного характера 1(n) по модулю m справедливо равенство

(2.10)

и поэтому функция L (S, 1) может быть аналитически продолжена в область ReS > 0, где она имеет единственный полюс (первого порядка) в точке S=1.

Действительно, по определению главного характера 1(n) имеет место равенство

Поэтому

Пользуясь теперь тождеством Эйлера для дзета-функции Римана получаем равенство (2.10). Остальные утверждения легко следуют из этого равенства, поскольку дзета-функция является аналитической в области ReS > 0 с единственным полюсом первого порядка в точке S = 1.

Следствие 2. Для каждого характера функция L (S, x) не обращается в нуль в области ReS > 1.

Доказательство.

Если = ReS > 1. то

Пользуясь неравенством для дзета-функции Римана, находим

Получаем:

L (S,) ≥ > 0

Теперь докажем утверждения, что L – функция, соответствующая неглавному характеру , точке S =1 отлична от нуля.

Теорема 2. Если – неглавный характер, то L (1, )≠0

Для доказательства рассмотрим 2 случая

1. Пусть характер – комплексное число, не является действительным. Тогда характер 2(n) не является главным. В этом случае доказательство теоремы будет основываться на тех же идеях, что и доказательство отсутствия нулей дзета – функции на прямой ReS=1.

Лемма7. Пусть 0<ч<1, а х – действительное число, тогда выполняется неравенство /(1 – ч)3 (1 – чеix)4 (1 – че2ix)/-1 ≥ 1

Доказательство.

Для всех z из круга /z/<1 имеет место расположение

ln (1 – z) = (2.11)

Так как ln(t) = Re lnt, то обозначая М (ч φ), левую часть неравенства (2.11), получим

lnM (ч φ) = 3ln (1 – ч) – 4 ln (1 – чеi4) – ln (1 – че2i4) = – 3ln (1-ч) – 4Reln/1 – чеi4/ – Reln/1 – че2i4/= rc (3+4e)inl /1-rei4/= (3+4cosnl+2cos2nl)= (2+4cos+1+cos2)= 1 (1+cos)20

ln=M (r, l)=0

Следовательно, M (r, l)=1 доказана.

Из леммы 7 следует, сто при любом действительном S>1 выполняется равенство:

|L3(8, 1) L4(S, ) 4 (S, 4) 1 = П (1- )3(1- )4(1- )|-1 (2.12)

Получая в лемме ч = р-s, т.е.

0< ч = 1(р)<1

0< р-s <1

(р) р-s = чеi4, в силу того что (р) – комплексное

(р) р-s = че2i4

Получаем, что каждый сомножитель в правой части равенства (f) не меньше 1 и, следовательно, при любом S>1 выполняется равенство:

|L3(S1) · L4(S) L (S2)| ≥ 1 (2.13)

Допустим, что для некоторого характера (21) выполняется равенство

L (1, ) = 0 (2.14)

Оценим сверху левую часть неравенства. Из оценки дзета-функции Римана

ξ(S) ≤ , следует, что при S € R, S>1 выполняется неравенство

а) 0 < 4 (S, 1) =

получили 01)≤

б) Функция L (S, ) разложим в ряд Тейлора

L (S, ) = Cp + C1 (S – 1) + C2(S – 1)2 +… + Cn(S – 1)n +…

Предположим, что у нее есть нуль L (1, ) = 1; тогда С0 = 0

Перепишем разложение L – функции в ряд

L(S) = Cк (S – 1)к + Ск+1(S – 1)к+1 = (S – 1)1 (Cк + Ск+1(S -1) +….), где к≥1, Ск ≤ 0, т. к. S>1

| L (S, )| = |S – 1|k| Ck + Ck+1(S – 1) +….| ≤ 2 Ck|S – 1)k, при |S – | < r

Функция L (S, 2) в точке S = 1 не имеет полюса, следовательно не имеет особенности. Это в силу того, что комплексное и 21

Получаем неравенство:

L (S, 2) ≤ C,

При условии | S – 1|< δ

Учитывая все неравенства и оценки

| L3 (S, ) L4(S, ) L (S, 2)| = ( )3 · 24 |Ck|4 (S – 1)4k· C≥1

Следовательно, это неравенство становится противоречивым, если перейти к пределу при S→1+0. Полученное противоречие показывает, что равенство (2.14) не выполняется.

2. Рассмотрим – вещественный характер, т.е. принимающий только вещественные значения, несовпадающий с главным характером

Лемма 8. Пусть – вещественный характер.

Рассмотрим функцию

F(S) = ξ(S) L (S, x) (2.15)

Докажем, что если Re S>1, то

(2.16)

представляется рядом Дирихле, которого справедливы следующие утверждения:

1) Все коэффициенты аn ≥ 0

2) при n=k2, k € / N(N)/ аn≥1

3) В области ReS<1 можно почленно дифференцировать, то есть

F (k) (S)= (-1)k(ln n)k k=1,2…; (2.17)

4) Ряд (1) в точке S=1/2 расходится.

Доказательство. В области ReS > 1 ряды, определяющие функции S(S) и L (S,), абсолютно сходятся, поэтому их можно перемножить:

где

(2.19)

Пусть - расположение числа n в произведение простых сомножителей. Тогда все натуральные делители l числа n имеют вид

поэтому из равенства (14) находим, что

где ani = 1+ (pi)+ … +Li (pi), i=1,…, m (2.21)

так как – вещественный характер, то он может принимать только три значения: 0, 1, -1. Из равенства (2.21) следует, что

(2.22)

Во всех случаях числа ani0, а значит, и an=an1 … anm0

Если же число п является полным квадратом, то

N=k2=p/2 … pm 2,

и из равенств (2.20) и (2.22) следует, что аn 1

При любом > 0 в области ReS> 1 + выполняется неравенство

Ряд (2.18) сходится в области ReS > 1. Поэтому по признаку Вейерштрасса ряд (2.16) сходится равномерно в области ReS > 1 + , а по теореме Вейерштрасса его можно в этой области почленно дифференцировать любое число раз. Следовательно, в области ReS > 1 + выполняется равенство (2. 17), а в силу произвольности оно выполняется и в области ReS > 1.

Однако ряд (39) расходится, так как по второму утверждению леммы

Ряд (2.16) при S = имеет неотрицательные члены. Поэтому, если бы он сходился, то также сходился бы ряд

(2.23)

Следовательно, ряд (2.23) расходится. Лемма доказана.

Переходим непоредственно к доказательству второго случая теоремы. Допустим, что L (1,) = 0. Тогда полюс дзета-функции будет компенсироваться в произведении S(S) L (S, ) нулем функции L (S, ).

Поэтому функция (2.15) F(S) будет аналитической в области ReS > 0 так как в точке S=1 у F() – устраненная особая точка. Следовательно, ее можно разложить в ряд Тейлора в точке S = 2:

(2. 24)

радиус сходимости которого не меньше 2 R2/

Из равенств (2.17), в частности S=2, находим

(2.25)

В радиусе сходимости будет брать не все S, а только вещественные ReS= S=(0,2). Пользуясь разложениями (18) и (19), находим

Члены двойного ряда неотрицательны, поэтому он сходится абсолютно, и в нем можно поменять порядок суммирования. Тогда

Следовательно, ряд (2.16) сходится во всех точках, < (, 0, 2), и в точке , а это противоречит четвертому утверждению леммы. Поэтому L (S,)0/

Этим завершается доказательство теоремы

По следствию 2 леммы 2 функция является аналитической в области ReS > 1. Для дальнейшего доказательства теоремы Дирихле нам будет необходимо представление этой функции в виде ряда, аналогичного ряда (2.16).

Лемма. Для каждого характера (n) в области ReS > 1 справедливо равенство

(2.26)

Доказательство.

Так как S=+it имеет место неравенство

получаем, что ряд стоящий в правой части равенства (2.26), абсолютно сходится в области >1. Умножим этот ряд на ряд определяющий L (S, ). Получили

Предпоследнее равенство имеет место ввиду равенства ), а последнее – по следствию из леммы 3, равенство 2.7.

3. Доказательство теоремы Дирихле

Теорема. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.

Доказательство.

Рассмотрим равенство (2.26), которое справедливое по Лемме в области ReS > 1. Поскольку (n) = 0 для всех n, не являющихся степенями простых чисел, то все отличные от нуля члены ряда в правой части (2.26) имеют вид

где р – простое и k – натуральное числа. Ряд (2.26) абсолютно сходится, следовательно, его можно представить в виде двойного ряда) и, значит, в области ReS > 1

(3.1)

Второе слагаемое в правой части этого равенства равномерно ограничено по s в области ReS3/4. Действительно, если S=+it, 3/4, то

Следовательно, при S1+0 для каждого характера имеет место равенство

(3.2)

Здесь и в дальнейшем s 1 + обозначает, что S стремится к 1 по действительной оси справа.

Пусть – некоторое натуральное число, удовлетворяющее сравнению

(3.3)

Умножим обе части равенства (3.2) на () и просуммируем получившиеся равенства по всем числовым характерам . Тогда получим

(3.3)

Если простое число р удовлетворяет сравнению р l (mod m), то p ≠ 1 (mod m), и по теореме 1

Если же p≠l (mod m), то p≠ 1 и по той же теореме

Таким образом, равенство (3.3) можно переписать в виде

(3.4)

По лемме 3 и теореме 2 для неглавного характера функция является аналитической в точке S = 1. Поэтому для таких характеров при S 1 + 0 имеем

(3.5)

По следствию 1 леммы 4 функция L (S, 1) имеет в точке S=1 полюс первого порядка. Значит, при S1+0

(3/6)

Учитывая равенства (3.5) и (3.6.) из равенства (26) получаем, что

Так как число удовлетворяет сравнению (3.3), то (, m) = 1 и 0()=1. Итак, при S1+0

(3.7)

Правая часть равенства а (3.7) при S1+0 имеет бесконечный предел. Значит, сумма, стоящая в левой части этого равенства, имеет бесконечное множество слагаемых. Поэтому существует бесконечное множество простых чисел, удовлетворяющих сравнению

pe (mod m)

Теорема Дирихле доказана.

Характеристики

Тип файла
Документ
Размер
2,24 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее