86104 (612645), страница 5

Файл №612645 86104 (Чисельні методи розв’язування крайових задач для звичайних диференціальних рівнянь) 5 страница86104 (612645) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

break;

if m<>1 then

for i:=0 to m do

if abs(memory[i]-y[2*i])/15>eps then

begin

g:=false;

break;

end

else

g:=true;

SetLength(memory,2*m+1);

memory:=Copy(y);

if g then

writeln(t_all,'Крайова задача розвязана з точністю eps =',eps:0:4);

for i:=0 to 2*m do

begin

write(t_all,y[i]:0:10);

write(t_all,' ');

writeln(t_all,x[i]:0:10);

end;

Writeln(t_all,'Кількість вузлів - ',2*m+1);

Writeln(t_all,'Крок сітки - ',h:0:10);

Writeln(t_all);

st:=m;

m:=m*2;

end;

rewrite(ty);

rewrite(tx);

rewrite(k_i);

writeln(k_i,h:0:10);

writeln(k_i,2*m+1);

form2.StringGrid1.ColCount:=2*st+2;

for i:=0 to (2*st+1) do

begin

form2.StringGrid1.Cells[i+1,0]:=inttostr(i+1);

form2.StringGrid1.Cells[i+1,1]:=floattostr(x[i]);

form2.StringGrid1.Cells[i+1,2]:=floattostr(y[i]);

writeln(ty,y[i]:0:10);

writeln(tx,x[i]:0:10);

end;

for i:=0 to (2*st) do

form2.Series1.AddXY(x[i],y[i]);

form2.Label1.Caption:='Крок сітки - '+floattostr(h);

form2.Label2.Caption:='Кількість вузлів - '+floattostr(2*st+1);

time1:=timer;

vremja:=abs(time2-time1);

form2.Label3.Caption:='час роботи: '+floattostr(vremja*0.01)+' секунд(и)';

writeln(k_i,vremja*0.01:0:5);

CloseFile(t_all);

CloseFile(tx);

CloseFile(ty);

CloseFile(k_i);

form2.Show;

end;

end

Результати записуємо у файл.

Графік отриманий програмою:

Якщо проаналізувати ці два приклади програми:

1)з використанням методу Гауса для розв’язання тридіагональної матриці;

2)з використанням методу прогонки для розв’язання тридіагональної матриці.

Ми можемо сказати, що для однієї і тієї ж задачі час розв’язання з використанням 1ого методу складає 2,99 сек., а для 2ого 0.1 сек. Така розбіжність у часі випливає з того, що метод прогону є модифікацією методу Гауса і призначений спеціально для розв’язку матриць з 3и і 5и діагональними структурами.

Розв’язуємо задачу за допомогою пакету Mathematica:

100

0.01

-0.123705

MultipleListPlot[{{0.5,0.154796},{0.51,0.146438},{0.52,0.138265},{0.53,0.130272},{0.54,0.122456},{0.55,0.114812},{0.56,0.107336},{0.57,0.100024},{0.58,0.0928731},{0.59,0.0858792},{0.6,0.079039},{0.61,0.0723491},{0.62,0.0658064},{0.63,0.0594079},{0.64,0.0531504},{0.65,0.0470312},{0.66,0.0410475},{0.67,0.0351966},{0.68,0.0294758},{0.69,0.0238829},{0.7,0.0184152},{0.71,0.0130705},{0.72,0.00784647},{0.73,0.00274101},{0.74,-0.002248},{0.75,-0.00712262},{0.76,-0.0118848},{0.77,-0.0165364},{0.78,-0.0210793},{0.79,-0.0255153},{0.8,-0.029846},{0.81,-0.0340732},{0.82,-0.0381983},{0.83,-0.0422231},{0.84,-0.0461488},{0.85,-0.049977},{0.86,-0.0537091},{0.87,-0.0573463},{0.88,-0.06089},{0.89,-0.0643414},{0.9,-0.0677017},{0.91,-0.0709721},{0.92,-0.0741536},{0.93,-0.0772473},{0.94,-0.0802542},{0.95,-0.0831754},{0.96,-0.0860117},{0.97,-0.0887641},{0.98,-0.0914334},{0.99,-0.0940204},{1.,-0.096526},{1.01,-0.0989509},{1.02,-0.101296},{1.03,-0.103561},{1.04,-0.105748},{1.05,-0.107857},{1.06,-0.109889},{1.07,-0.111844},{1.08,-0.113722},{1.09,-0.115525},{1.1,-0.117252},{1.11,-0.118904},{1.12,-0.120482},{1.13,-0.121985},{1.14,-0.123415},{1.15,-0.124771},{1.16,-0.126054},{1.17,-0.127264},{1.18,-0.128401},{1.19,-0.129466},{1.2,-0.130459},{1.21,-0.131379},{1.22,-0.132228},{1.23,-0.133004},{1.24,-0.133708},{1.25,-0.134341},{1.26,-0.134902},{1.27,-0.135391},{1.28,-0.135808},{1.29,-0.136154},{1.3,-0.136427},{1.31,-0.136628},{1.32,-0.136757},{1.33,-0.136814},{1.34,-0.136798},{1.35,-0.136709},{1.36,-0.136547},{1.37,-0.136312},{1.38,-0.136004},{1.39,-0.135621},{1.4,-0.135164},{1.41,-0.134633},{1.42,-0.134026},{1.43,-0.133344},{1.44,-0.132586},{1.45,-0.131752},{1.46,-0.130841},{1.47,-0.129852},{1.48,-0.128786},{1.49,-0.127641},{1.5,-0.126416}},{{0.5,0.159038},{0.51,0.150628},{0.52,0.142405},{0.53,0.134363},{0.54,0.126498},{0.55,0.118807},{0.56,0.111285},{0.57,0.103929},{0.58,0.0967336},{0.59,0.0896968},{0.6,0.0828146},{0.61,0.0760838},{0.62,0.0695011},{0.63,0.0630634},{0.64,0.0567678},{0.65,0.0506112},{0.66,0.0445911},{0.67,0.0387046},{0.68,0.0329491},{0.69,0.0273222},{0.7,0.0218214},{0.71,0.0164443},{0.72,0.0111888},{0.73,0.00605251},{0.74,0.00103346},{0.75,-0.00387045},{0.76,-0.00866119},{0.77,-0.0133407},{0.78,-0.0179107},{0.79,-0.0223731},{0.8,-0.0267296},{0.81,-0.0309819},{0.82,-0.0351315},{0.83,-0.0391799},{0.84,-0.0431288},{0.85,-0.0469795},{0.86,-0.0507334},{0.87,-0.0543918},{0.88,-0.0579562},{0.89,-0.0614276},{0.9,-0.0648073},{0.91,-0.0680964},{0.92,-0.0712961},{0.93,-0.0744074},{0.94,-0.0774314},{0.95,-0.0803691},{0.96,-0.0832213},{0.97,-0.085989},{0.98,-0.0886731},{0.99,-0.0912744},{1.,-0.0937936},{1.01,-0.0962317},{1.02,-0.0985892},{1.03,-0.100867},{1.04,-0.103065},{1.05,-0.105185},{1.06,-0.107227},{1.07,-0.109192},{1.08,-0.11108},{1.09,-0.112891},{1.1,-0.114627},{1.11,-0.116287},{1.12,-0.117872},{1.13,-0.119382},{1.14,-0.120819},{1.15,-0.122181},{1.16,-0.123469},{1.17,-0.124684},{1.18,-0.125825},{1.19,-0.126894},{1.2,-0.12789},{1.21,-0.128813},{1.22,-0.129664},{1.23,-0.130442},{1.24,-0.131148},{1.25,-0.131781},{1.26,-0.132342},{1.27,-0.132831},{1.28,-0.133248},{1.29,-0.133592},{1.3,-0.133863},{1.31,-0.134062},{1.32,-0.134189},{1.33,-0.134242},{1.34,-0.134222},{1.35,-0.134129},{1.36,-0.133962},{1.37,-0.133722},{1.38,-0.133407},{1.39,-0.133018},{1.4,-0.132554},{1.41,-0.132015},{1.42,-0.1314},{1.43,-0.13071},{1.44,-0.129943},{1.45,-0.129098},{1.46,-0.128177},{1.47,-0.127177},{1.48,-0.126099},{1.49,-0.124942},{1.5,-0.123705}},PlotLegend{Mathematica,Rizn method},PlotJoined{False,True},PlotPosition{0.3,-0.5}]

Отримуємо графіки:

де червона – метод скінченних різниць.

синя – стандартний метод пакету Mathematica

Висновки

Крайова задача для звичайних диференціальних рівнянь є набагато складнішою, ніж задача Коші. Одним із підходів до розв'язання цієї задачі є зведення її до задачі Коші зі змінними початковими умовами. Розв'язок задачі отримують багаторазовим розв'язанням задачі Коші.

У загальному випадку для розв'язання двоточкової крайової задачі (одно- чи багатовимірної, лінійної чи нелінійної) доцільно застосовувати метод прицілювання, а для розв'язання окремих лінійних одновимірних задач — метод композиції двох розв'язків задачі Коші з різними початковими умовами.

Ефективним методом розв'язання лінійної крайової задачі для диференціального рівняння другого порядку є метод скінченних різниць, у якому використовуються різницеві схеми апроксимації для похідних першого і другого порядків. У результаті крайова задача перетворюється на задачу розв'язання системи лінійних рівнянь із тридіагональною матрицею. Цю систему можна розв'язати методом прогону.

Метод скінченних різниць дозволяє також обчислювати власні значення і власні функції крайової задачі, які визначають нетривіальні розв'язки однорідної крайової задачі.

Метод скінченних різниць можна застосовувати і для розв'язання нелінійних крайових задач, але в цьому випадку необхідно лінеаризовувати нелінійні функції, що входять в умову задачі.

Розв'язок крайової задачі у вигляді апроксимуючого аналітичного виразу отримують методами колокацій, Гальоркіна і найменших квадратів введенням базисних функцій, які враховують граничні умови.

Коефіцієнти для базисних функцій та їх композиції, які апроксимують розв'язок крайової задачі, у методі колокацій вибирають з умови нульової нев'язки в обраних вузлах інтервалу розв'язку, у методі найменших квадратів — з умови мінімуму квадрату нев'язки, а в методі Гальоркіна — з умови ортогональності нев'язки до обраних базисних функцій.

У сучасних математичних пакетах розв'язання крайових задач для рівнянь з частинними похідними конкуренцію розглянутим методам складає метод скінчених елементів, що базується на концепціях метода Гальоркіна за умови спеціального вибору базисних функцій.

Література

1.Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков «Численные методы»

2.В.А.Буслов, С.Л.Яковлев «Численные методы ІІ.Решение уравнений».-Курс лекций,- СПб, 2001.

3.Н.Н.Калиткин «Численные методы»

4.А.А.Самарский, А.В.Гулин «Численные методы»,- Москва,- «Наука»,-1989г.

5.Б.П.Демидович, И.А.Марон, Э.Э.Шувалов «Численные методы анализа»,-ред. Б.П.Демидовича,- Москва,- «Наука»,- 1967г.

Характеристики

Тип файла
Документ
Размер
6,39 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее