86088 (612638), страница 3

Файл №612638 86088 (Сравнительный анализ методов оптимизации) 3 страница86088 (612638) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Рисунок 4 – 1-поиск по образцу; 2- исследующий поиск вдоль координатных осей.

При заданном начальном векторе x1 исследующий поиск по координатным направлениям приводит в точку x2 . Последующий поиск по образцу в направлении x1- x2 приводит в точку y. Затем исследующий поиск, начинающийся из точки y, дает точку x3. Следующий этап поиска по образцу вдоль направления x3- x2 дает y*. Затем процесс повторяется.

Рассмотрим вариант метода, использующий одномерную минимизацию вдоль координатных направлений d1,..., dn и направлений поиска по образцу.

Начальный этап. Выбрать число eps > 0 для остановки алгоритма. Выбрать начальную точку x1, положить y1= x1, k=j=1 и перейти к основному этапу.

Основной этап.

Шаг 1. Вычилить lymj - оптимальное решение задачи минимизации f(yj+lym * dj) при условии lym принадлежит E1. Положить y[j+1]= yj+lymj*dj. Если j < n, то заменить j на j+1 и вернуться к шагу 1. Если j=n, то положить x[k+1] = y[n+1]. Если ||x[k+1] - xk|| < eps , то остановиться; в противном случае перейти к шагу 2.

Шаг 2. Положить d = x[k+1] - xk и найти lym - оптимальное решение задачи минимизации f(x[k+1]+lym*d) при условии lym принадлежит E1. Положить y1= x[k+1]+lym*d, j=1, заменить k на k+1 и перейти к шагу 1. Для решения поставленной задачи выбрано приближение ε=0,02, α=0,15

Таблица 4 - Метод Хука-Дживса

№ шага

x1

x2

Z(x1,x2)

1

1,147

1,257

5,0057324

2

1,127

1,237

4,7420444

3

1,107

1,217

4,4844364

4

1,087

1,197

4,2329084

5

1,067

1,177

3,9874604

6

1,047

1,157

3,7480924

7

1,027

1,137

3,5148044

8

1,007

1,117

3,2875964

9

0,987

1,097

3,0664684

10

0,967

1,077

2,8514204

11

0,947

1,057

2,6424524

12

0,927

1,037

2,4395644

13

0,907

1,017

2,2427564

14

0,887

0,997

2,0520284

15

0,867

0,977

1,8673804

16

0,847

0,957

1,6888124

17

0,827

0,937

1,5163244

18

0,807

0,917

1,3499164

19

0,787

0,897

1,1895884

20

0,767

0,877

1,0353404

21

0,747

0,857

0,887172399999997

22

0,727

0,837

0,745084399999997

23

0,707

0,817

0,609076399999996

24

0,687

0,796999999999999

0,479148399999997

25

0,667

0,776999999999999

0,355300399999997

26

0,647

0,756999999999999

0,237532399999997

27

0,627

0,736999999999999

0,125844399999997

28

0,607

0,716999999999999

0,0202363999999973

29

0,587

0,696999999999999

-0,0792916000000026

30

0,567

0,676999999999999

-0,172739600000002

31

0,546999999999999

0,656999999999999

-0,260107600000002

32

0,526999999999999

0,636999999999999

-0,341395600000002

33

0,506999999999999

0,616999999999999

-0,416603600000002

34

0,486999999999999

0,596999999999999

-0,485731600000002

35

0,466999999999999

0,576999999999999

-0,548779600000002

36

0,446999999999999

0,556999999999999

-0,605747600000002

37

0,426999999999999

0,536999999999999

-0,656635600000002

38

0,406999999999999

0,516999999999999

-0,701443600000001

38

0,426999999999999

0,496999999999999

-0,699011600000001

Т.к в ε окрестности полученной на 38 шаге точке мы не получаем улучшения (уменьшения значения) функции, то примем x1=0,426999999999999 x2=0,496999999999999,

Z(x1,x2)= -0,699011600000001.

2.3 Метод правильного симплекса

Правильный симплекс в пространстве En называется множество из n+1 равноудаленных друг от друга точек (вершин симплекса). В пространстве Е2 правильным симплексом является совокупность вершин равностороннего треугольника, Е3 – правильного тетраэдра.

Поиск точки минимума функции f(x) с помощью правильных симплексов производят следующим образом. На каждой итерации сравниваются значения f(x) в вершинах симплекса. Затем проводят описанную выше процедуру отражения для этой вершины, в которой f(x) принимает наибольшее значение. Если в отраженной вершине получается меньшее значение функции, то переходят к новому симплексу. В противном случае выполняют еще одну попытку отражения для вершины со следующим по величине значением f(x). Если и она не приводит к уменьшению функции, то сокращают длину ребра симплекса и строят новый симплекс с новым ребром. В качестве базовой выбирают ту вершину х0 старого симплекса, которой функция принимает наименьшее значение. Поиск минимума f(x) заканчивают, когда либо ребро симплекса, либо разность между значениями функции в вершинах симплекса становятся достаточно малыми.

Начальный этап. Выбрать параметр точности eps, базовую точку x0, ребро a и построить начальный симплекс. Вычислить f(x0).

Основной этап.

Шаг 1. Вычислить значения f(x) в вершинах симплекса x1,..., xn.

Шаг 2. Упорядочить вершины симплекса x0,..., xn так, чтобы f(x0)<=f(x1)<=...<=f(x[n-1])<=f(xn).

Шаг 3. Проверим на окончание поиска

,

где

Это одно из возможных условий останова. Его выполнении соответствует либо малому ребру a симплекса, либо попаданию точки минимума x* внутрь симплекса, либо тому и другому одновременно.

Если это условие выполнено, то вычисления прекратить, полагая x*= x0. В противном случае перейти к шагу 4.

Шаг 4. Найти xс и выполнить отражение вершины xn : y=2*xс- xn. Если f(y)

Шаг 5. Перейти к новому правильному симплексу с вдвое меньшим ребром, считая базовой вершиной x0. Остальные n вершин симплекса найти по формуле xi=( xi+ x0)/2, i=1,...,n. Перейти к шагу 1.

Для решения поставленной задачи выбрано приближение ε=0,01, α=0,3

Таблица 5 - Метод симплекса

№ шага

Z(x0,y0)

Z(x1,y1)

Z(x2,y2)

α

1

5,2755004

7,4172004

5,62549807735416

0,3

2

5,2755004

5,62549807735416

3,76366398915256

0,3

3

3,76366398915256

5,2755004

3,5838004

0,3

4

3,5838004

3,76366398915256

2,35182990095096

0,3

5

2,35182990095096

3,5838004

2,3421004

0,3

6

2,3421004

2,35182990095096

1,38999581274936

0,3

7

1,38999581274936

2,3421004

1,5504004

0,3

8

1,38999581274936

1,5504004

0,878161724547756

0,3

9

0,878161724547756

1,38999581274936

0,657100646520204

0,3

10

0,657100646520204

0,878161724547756

0,425132470117002

0,3

11

0,425132470117002

0,657100646520204

0,143414901312537

0,3

12

0,143414901312537

0,425132470117002

0,191312636707734

0,3

13

0,143414901312537

0,191312636707734

-0,15106142287364

0,3

14

-0,15106142287364

0,143414901312537

-0,0288250700672363

0,3

15

-0,15106142287364

-0,0288250700672363

-0,383957885030324

0,3

16

-0,383957885030324

-0,15106142287364

-0,226328326038328

0,3

17

-0,383957885030324

-0,226328326038328

-0,519881278971922

0,3

18

-0,519881278971922

-0,383957885030324

-0,507376749762318

0,3

19

-0,519881278971922

-0,507376749762318

-0,703956634480828

0,3

20

-0,703956634480828

-0,521318017069623

-0,507376749762318

0,3

21

-0,703956634480828

-0,521318017069623

-0,778554392565042

0,3

22

-0,778554392565042

-0,703956634480828

-0,681327098177849

0,3

23

-0,778554392565042

-0,816581347038974

-0,681327098177849

0,3

24

-0,816581347038974

-0,778554392565042

-0,743674553224567

0,3

25

-0,816581347038974

-0,842357998475409

-0,743674553224567

0,3

26

-0,845848412956476

-0,846177360374865

-0,838238020383463

0,075

27

-0,846177360374865

-0,845848412956476

-0,843154372435278

0,075

28

-0,846616455690446

-0,845848412956476

-0,843154372435278

0,075

29

-0,848017017695877

-0,847087728053341

-0,846597987664592

0,0375

30

-0,848017017695877

-0,847980516275042

-0,847811621576176

0,01875

31

-0,848017017695877

-0,848085062414109

-0,847811621576176

0,01875

Т.к дальнейшее уменьшение α невозможно(α/2< ε) и в ε окрестности полученной на 31 шаге точке мы не получаем улучшения (уменьшения значения) функции, то примем x=0,248249999999998 и y=0,408289729858682 Z(x,y)= -0,847811621576176.

2.4 Метод деформированного симплекса

Алгоритм минимизации по правильному симплексу можно модифицировать, добавив к процедуре отражения при построении нового симплекса процедуры сжатия и растяжения. А именно, положение новой вершины y вместо вершины xn , соответствующей наибольшему значению функции, находится сравнением и выбором наименьшего среди значений целевой функции в точках:

z1= xc - a( xc - xn), 0

z2 = xc + a( xc - xn), 0

z3 = xc + b( xc - xn), b приближенно равно 1;

z4 = xc + g( xc - xn), g<1.

Геометрическая иллюстрация этих процедур для двумерного пространства приведена на рисунке 7.

Новые симплексы полученные в результате процедуры сжатия (a,b); отражения (c); растяжения (d)

Так как величина a принадлежит интервалу (0;1), то выбор точек z1 и z2 соответствует сжатию симплекса; b приближенно равно 1, поэтому выбор точки z3 соответствует отражению, а g>1 и выбор точки z4 приводит к растяжению симплекса.

Отметим, что при деформациях утрачивается свойство правильности исходного симплекса.

Алгоритм метода поиска точки минимума функции по деформируемому симплексу

Начальный этап. Выбрать параметр точности eps, параметры a, b и g, базовую точку x0 , параметр a и построить начальный симплекс. Вычислить значение функции f(x0).

Основной этап. Шаг 1. Вычислить значения функции в вершинах симплекса x1,..., xn.

Шаг 2. Упорядочить вершины симплекса x0,..., xn так, чтобы f(x0)<=f(x1)<=...<=f(x[n-1])<=f(xn).

Шаг 3. Проверить условие (1/n)Sum[f(xi)-f(x0)]^2 < e^2, i=[1,n].

Это одно из возможных условий останова. При его выполнении "дисперсия" значений f(x) в вершинах симплекса становится меньше e2, что, как правило, соответствует либо малому ребру a симплекса, либо попаданию точки минимума x* внутрь симплекса, либо тому и другому одновременно.Если это условие выполнено, то вычисления прекратить, полагая x*= x0. В противном случае перейти к шагу 4.

Шаг 4. Найти xс и пробные точки zk , k=1,...,4 по формулам (2). Найти f(z*)=minf(zk). Если f(z*)

Шаг 5. Уменьшить симплекс, полагая xi=( xi+ x0)/2, i=1,...,n перейти к шагу 1.

На практике хорошо зарекомендовал себя следующий набор параметров a=1/2, b=1, g=2, поэтому он и был использован в программе.

Таблица 5 – Метод деформированного симплекса

№ шага

Z(x0,y0)

Z(x1,y1)

Z(x2,y2)

1

5,25127562399313

5,35273629457997

4,72465845389651

2

4,47048359472409

5,52371793491734

4,32427361628427

3

4,26941489330181

4,56183485018145

2,53610076197985

4

2,53610076197985

4,26941489330181

2,54614140634749

5

2,60406550474582

2,62414679348111

0,650136727095332

6

0,873172338270091

4,78102989357106

-0,460995375774572

7

-0,460995375774572

-0,183165198484471

-0,647802169588968

8

-0,647802169588968

-0,460995375774572

-0,752046189909185

9

-0,752046189909185

-0,647802169588968

-0,743774186218157

10

-0,824978188986428

-0,820842187140914

-0,807869388437316

11

-0,848148148136976

-0,848148148106495

-0,848148148103467

12

-0,848148148146818

-0,848148148131578

-0,848148148135116

13

-0,848148148146818

-0,848148148135116

-0,848148148139001

14

-0,848148148136976

-0,848148148106495

-0,848148148103467

15

-0,848148148148147

-0,848148148148145

-0,848148148148146

16

-0,848148148148148

-0,848148148148147

-0,848148148148147

T.к.

< ε,

то примем x=0,237037034153931 и y=0,407407409218273 Z(x,y)= -0,848148148148148

Сравнив все методы, мы видим, что для данной функции лучше подходит метод деформированного симплекса, т.к. он быстрее приводит к оптимальному решению.

3. Условная оптимизация

Задача условной оптимизации в общем случае записывается в известном виде:

Такая задача оптимизации, кроме целевой функции, включает дополнительные условия в виде ограничений и граничных условий.

На рисунке 12 представлена фигура, объем, которой необходимо максимизировать при заданной площади поверхности

Рисунок 12 – Фигура для максимизации объема при заданной площади поверхности

Найдем полную площадь поверхности данной фигуры(без верхней поверхности):

,

найдем объем фигуры:

Эта задача представляет собой пример задачи условной оптимизации: необходимо найти максимальный объем при заданном значении площади поверхности.

Эту задачу можно решить двумя методами:

Метод преобразования целевой функции,

метод штрафных функций.

3.1 Метод преобразования целевой функции

Т.к. положено ограничение типа равенства, то из этого ограничения одну переменную выразим через другую и подставим полученную зависимость в целевую функцию и получим преобразованную целевую функцию, но без ограничений.

V = 4/3∙a2∙h2+7/3∙h1∙a2 → max (1)

S = 6∙a∙h1+4∙h2∙a (2)

Выразим a из (2) и подставим в (1), получим:

V = s2∙(4∙h2+7∙h1)/3∙(6∙h1+4∙h2)2

Теперь, задав начальные условия, значение площади поверхности, и выбрав нужную точность можно решить задачу любым методом безусловной оптимизации.

Возьмем, например, метод правильного симплекса, и зададим начальные условия: а=1м, h1=3м, h2=4м, s=34м. Для метода симплекса выберем точность ε=0,001.

Т.е максимальный объем V=12,7151461307724, при заданной площади получается при h1 = 2,946875, и h2 = 3,83229490168751

3.2 Метод штрафных функций

Методы штрафных функций относятся к группе непрямых методов решения задач нелинейного программирования:

f(x) -> min;

gi(x) 0, i 1, ..., k;

hj(x) 0, j 1, ..., m;

a x b.

Они преобразуют задачу с ограничениями в последовательность задач безусловной оптимизации некоторых вспомогательных функций. Последние получаются путем модификации целевой функции с помощью функций-ограничений таким образом, чтобы ограничения в явном виде в задаче оптимизации не фигурировали. Это обеспечивает возможность применения методов безусловной оптимизации. В общем случае вспомогательная функция имеет вид

F(x,a) f(x) +rS(x)

Здесь f(x) - целевая функция задачи оптимизации; S(x) - специальным образом выбранная функция штрафа,где r— множитель, значения которого можно изменять в процессе оптимизации.. Точку безусловного минимума функции F(x, a) будем обозначать через х(а).

Среди методов штрафных функций различают методы внутренней и внешней точки. Согласно методам внутренней точки (иначе называемым методами барьерных функций), исходную для поиска точку можно выбирать только внутри допустимой области, а для методов внешней точки как внутри, так и вне допустимой области (важно лишь, чтобы в ней функции целевая и ограничений были бы определены).

3.2 Методы штрафных функций

Эти методы применяются для решения задач нелинейного программирования с ограничениями-неравенствами.

В рассматриваемых методах функции Ф(x, а) подбирают такими, чтобы их значения неограниченно возрастали при приближении к границе допустимой области G (Рисунок 14). Иными словами, приближение к границе “штрафуется” резким увеличением значения функции F(x, а). На границе G построен “барьер”, препятствующий нарушению ограничении в процессе безусловной минимизации F(x, a). Поиск минимума вспомогательной функции F(x, а) необходимо начинать с внутренней точки области G .

Таким образом, внутренняя штрафная функция Ф(х, а) может быть определена следующим образом:

Здесь dG -граница области G.

Рисунок 14 - Внутренняя штрафная функция

Методы внешних штрафных функций

Данные методы применяются для решения задачи оптимизации при наличии как ограничений-неравенств, так и ограничений-равенств.

В рассматриваемых методах функции Ф(х, а) выбирают такими, что их значения равны нулю внутри и на границе допустимой области G, а вне ее -положительны и возрастают тем больше, чем сильнее нарушаются ограничения (Рисунок 15). Таким образом, здесь “штрафуется” удаление от допустимой области G.

Рисунок – 15 Внешняя штрафная функция

Внешняя штрафная функция Ф(х, а) в общем случае может быть определена следующим образом:

Для данного курсового проекта штрафная функция для объема данной фигуры имеет вид:

,

где - параметр штрафа, С – полная площадь поверхности, заданная изначально, V(a,h1,h2) = 4/3∙a2∙h2+7/3∙h1∙a2, S(a,h1,h2) = 6∙a∙h1+4∙h2∙a.

Задача была решена методом правильного трехмерного симплекса.

Мы видим, что при увеличении значения параметра штрафа, значение функции уменьшается (ухудшается), а при уменьшении – увеличивается (улучшается).

4. Симплекс таблицы

Для его применения необходимо, чтобы знаки в ограничениях были вида «меньше либо равно», а компоненты вектора b - положительны.

Алгоритм решения сводится к следующему:

Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.

Если в исходной системе ограничений присутствовали знаки «равно» или «больше либо равно», то в указанные ограничения добавляются искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.

Формируется симплекс-таблица.

Рассчитываются симплекс-разности.

Принимается решение об окончании либо продолжении счёта.

При необходимости выполняются итерации.

7 На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Пересчитывается таблица.

Дана функция вида:

f(x)=4x1+2x2

Подберем k геометрическим способом решения так, чтобы область допустимых значений была пятиугольником. k=7

Рисунок – 16 Область допустимых значений

Приведем запись задачи линейного программирования к стандартной форме, введем новых переменных, все ограничения кроме ограничения на знак представим в виде равенств, тогда эта задача примет вид.

4у1+2у2+0у3 +0у4 +0у5

=(0;0;8;12;7) – начальные допустимые базисные решения

Имея начальный базис, составляем симплекс таблицу для нулевой итерации.

Итерация

Базисная переменная

Значение

у1

у2

у3

у4

у5

0

у3

8

1

2

1

0

0

У4

12

4

1

0

1

0

У5

7

2

1

0

0

1

-f

0

4

2

0

0

0

Вводим в базис у1 , а выводим из базиса у4.

Итерация

Базисная переменная

Значение

у1

у2

у3

у4

у5

1

У3

5

0

1,75

1

-0,25

0

У1

3

1

0,25

0

0,25

0

У5

1

0

0,5

0

-0,5

1

-f

-12

0

1

0

-1

0

Вводим в базис у2 , а выводим из базиса у5.

Итерация

Базисная переменная

Значение

у1

у2

у3

у4

у5

2

У3

1,5

0

0

1

-2

-3,5

У1

2,5

1

0

0

0,5

-0,5

У2

2

0

1

0

-1

2

-f

-14

0

0

0

0

-2

Т.к. f<0, то останавливаемся на второй итерации.

Исходя из графика ОДЗ, можно определить, что оптимальным решением является отрезок прямой , входящий в

ОДЗ, проверим: 2,5*2+2=7.

x1 = 2,5, x2 = 2 f(x)=14.

Заключение

Целью данного курсового проекта было изучение методов оптимизации функции. Методов одномерной оптимизации: метод дихотомии, золотого сечения; многомерной безусловной оптимизации: покоординатный циклический спуск, метод Хука – Дживса, правильный симплекс, деформированный симплекс, а также методов условной оптимизации Метод преобразования целевой функции, метод штрафных функций, табличный симплекс – метод.

Список используемой литературы

  1. А.Г.Трифонов. Постановка задачи оптимизации и численные методы ее решения;

  2. Б. Банди. Методы оптимизации. Вводный курс., 1988;

  3. Мендикенов К.К. Лекции

Приложение А

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

namespace lab1

{

public partial class Form1 : Form

{

class global

{

private global() { }

public static double a = 0.64;

public static double b = 1.77;

public static double e = 0.0001;

public static double al = 0.00001;

public static double x = 0;

public static double y = 0;

public static int iter = 0;

}

public Form1()

{ InitializeComponent(); }

private void textBox1_TextChanged(object sender, EventArgs e)

{global.e = Convert.ToDouble(textBox1.Text); }

private void textBox2_TextChanged(object sender, EventArgs e)

{ global.al = Convert.ToDouble(textBox2.Text); }

public double F(double x)

{ return (Math.Pow((2.5 - x), 2) + 3.1 * x); }

public double Z(double x, double y)

{ return (2.5 * Math.Pow(x, 2) + 2 * x * y + 3.1 * Math.Pow(y, 2) -2* x-3*y); }

public double Dixotom()

{

global.iter = 1;

global.a = Convert.ToDouble(textBox4.Text);

global.b = Convert.ToDouble(textBox3.Text);

richTextBox1.Text = richTextBox1.Text+"a="+Convert.ToString(global.a)+"; b="+Convert.ToString(global.b)+(char)13;

while (true)

{

double x1 = (global.a+global.b)/2-global.al;

double x2 = (global.a + global.b) / 2 + global.al;

if (F(x1) < F(x2)) global.b = x2; else global.a = x1;

richTextBox1.Text = richTextBox1.Text + Convert.ToString(global.iter) + ") x1=" + Convert.ToString(x1) + "; x2=" + Convert.ToString(x2) + "; f(x1)=" + Convert.ToString(F(x1)) + "; f(x2)=" + Convert.ToString(F(x2)) + "; a=" + Convert.ToString(global.a) + "; b=" + Convert.ToString(global.b) + (char)13;

global.iter++;

if (Math.Abs(global.b - global.a) < global.e) break;

} return (global.a + global.b) / 2;

}

public double Zolot()

{ global.iter = 1;

global.a = Convert.ToDouble(textBox4.Text);

global.b = Convert.ToDouble(textBox3.Text);

richTextBox1.Text = richTextBox1.Text + "a=" + Convert.ToString(global.a) + "; b=" + Convert.ToString(global.b) + (char)13;

double x2 = global.a+0.618*(global.b - global.a) ;

double x1 = global.a + (1-0.618) * (global.b - global.a);

while (true)

{

if (Math.Abs(global.b - global.a) < global.e) break;

richTextBox1.Text = richTextBox1.Text + Convert.ToString(global.iter) + ") a=" + Convert.ToString(global.a) + "; b=" + Convert.ToString(global.b) + "; x1=" + Convert.ToString(x1) + "; x2=" + Convert.ToString(x2) + "; f(x1)=" + Convert.ToString(F(x1)) + "; f(x2)=" + Convert.ToString(F(x2)) + (char)13;

if (F(x2) > F(x1))

{ global.b = x2; x2 = x1; x1 = global.a + 0.372 * (global.b - global.a); }

else { global.a = x1; x1 = x2; x2 = global.a + 0.618 * (global.b - global.a); }

global.iter++;

}

return (global.a + global.b) / 2;

}

private void button1_Click(object sender, EventArgs e)

{ richTextBox1.Text = "";

global.al = Convert.ToDouble(textBox2.Text);

global.e = Convert.ToDouble(textBox1.Text);

if (radioButton1.Checked) global.x = Dixotom();

if (radioButton2.Checked) global.x = Zolot();

label2.Text = "Минимум: x*=" + Convert.ToString(global.x) + "; y(x*)=" + Convert.ToString(F(global.x)) + ", число итераций: "+Convert.ToString(global.iter-1);

}

public void Spusk(double x,double y)

{

while (true)//идем вправо

{ x = x + global.al; if (Z(x, y) > Z(x - global.al, y)) break; global.iter++;

richTextBox2.Text = richTextBox2.Text + Convert.ToString(global.iter)+ ") x=" + Convert.ToString(x) + "; y=" + Convert.ToString(y) + "; z(x,y)=" + Convert.ToString(Z(x, y)) + "; al=" + Convert.ToString(global.al) + (char)13;

x = x - global.al;//возвращаемся на неудачный шаг

while (true)//идем влево

{ x = x - global.al; if (Z(x, y) > Z(x + global.al, y)) break; global.iter++;

richTextBox2.Text = richTextBox2.Text + Convert.ToString(global.iter) + ") x=" + Convert.ToString(x) + "; y=" + Convert.ToString(y) + "; z(x,y)=" + Convert.ToString(Z(x, y)) + "; al=" + Convert.ToString(global.al) + (char)13; }

x = x + global.al;//возвращаемся на неудачный шаг

global.x=x; global.y=y;

SpuskV(x, y);

}

public void SpuskV(double x, double y)

{

while (true)//идем вверх

{ y = y + global.al; if (Z(x, y) > Z(x, y - global.al)) break; global.iter++;

richTextBox2.Text = richTextBox2.Text + Convert.ToString(global.iter) + ") x=" + Convert.ToString(x) + "; y=" + Convert.ToString(y) + "; z(x,y)=" + Convert.ToString(Z(x, y)) + "; al=" + Convert.ToString(global.al) + (char)13; }

y = y - global.al;//возвращаемся на неудачный шаг

while (true)//идем вниз

{ y = y - global.al; if (Z(x, y) > Z(x, y + global.al)) break; global.iter++;

richTextBox2.Text = richTextBox2.Text + Convert.ToString(global.iter) + ") x=" + Convert.ToString(x) + "; y=" + Convert.ToString(y) + "; z(x,y)=" + Convert.ToString(Z(x, y)) + "; al=" + Convert.ToString(global.al) + (char)13; }

y = y + global.al;//возвращаемся на неудачный шаг

global.x = x; global.y = y;

if (global.al/2 > global.e) { global.al = global.al / 2; Spusk(x, y); }

}

public void Hyg(double x, double y)

{ while (true)

{int min=Vibor(x, y);

if (min == 1) { x = x + 2 * global.e; y = y + 2 * global.e; if (Z(x - 2 * global.e, y - 2 * global.e) < Z(x, y)) break; }

if (min == 2) { x = x - 2 * global.e; y = y + 2 * global.e; if (Z(x + 2 * global.e, y - 2 * global.e) < Z(x, y)) break; }

if (min == 3) { x = x - 2 * global.e; y = y - 2 * global.e; if (Z(x + 2 * global.e, y + 2 * global.e) < Z(x, y)) break; }

if (min == 4) { x = x + 2 * global.e; y = y - 2 * global.e; if (Z(x - 2 * global.e, y + 2 * global.e) < Z(x, y)) break; }

global.iter++;

richTextBox2.Text = richTextBox2.Text + Convert.ToString(global.iter) + ") x=" + Convert.ToString(x) + "; y=" + Convert.ToString(y) + "; z(x,y)=" + Convert.ToString(Z(x, y)) +(char)13; }

global.x = x; global.y = y;

}

public int Vibor(double x, double y)

{ int min = 0;

if (Z(x + global.e, y + global.e) < Z(x, y)) min = 1;

if (Z(x + global.e, y - global.e) < Z(x, y)) min = 2;

if (Z(x - global.e, y - global.e) < Z(x, y)) min = 3;

if (Z(x - global.e, y + global.e) < Z(x, y)) min = 4;

return min; }

public void Sym(double x, double y)

{ double x0 = x; double y0 = y; double x1 = x0 + global.al; double y1 = y0;

double x2 = x0 + (global.al) / 2; double y2 = y0 + global.al * Math.Sin(60);

richTextBox2.Text = richTextBox2.Text + Convert.ToString(global.iter) + ") z(x0,y0)=" + Convert.ToString(Z(x0, y0)) + " z(x1,y1)=" + Convert.ToString(Z(x1, y1)) + " z(x2,y2)=" + Convert.ToString(Z(x2, y2)) + " al=" + Convert.ToString(global.al) + (char)13;

while (true)

{ //поиск наименьшего

double mx0 = x0; double my0 = y0; double mx1 = x1; double my1 = y1; double mx2 = x2; double my2 = y2;

double z1 = Z(mx0, my0); double z2 = Z(mx1, my1); double z3 = Z(mx2, my2);

if ((z1 < z2) && (z2 z1)) { x0 = mx0; x1 = mx1; x2 = mx2; y0 = my0; y1 = my1; y2 = my2; }

if ((z1 z3) && (z3 > z1)) { x0 = mx0; x1 = mx2; x2 = mx1; y0 = my0; y1 = my2; y2 = my1; }

if ((z1 > z2) && (z2 < z3) && (z3 < z1)) { x0 = mx1; x1 = mx2; x2 = mx0; y0 = my1; y1 = my2; y2 = my0; }

if ((z1 > z2) && (z2 z1)) { x0 = mx1; x1 = mx0; x2 = mx2; y0 = my1; y1 = my0; y2 = my2; }

if ((z1 z3) && (z3 < z1)) { x0 = mx2; x1 = mx0; x2 = mx1; y0 = my2; y1 = my0; y2 = my1; }

if ((z1 > z2) && (z2 > z3) && (z3 < z1)) { x0 = mx2; x1 = mx1; x2 = mx0; y0 = my2; y1 = my1; y2 = my0; }

//проверка на выход

if (global.al <= global.e) break;

while (true)

{ //отражение относительно 3

double kx= (x0+x1)-x2; double ky = (y0 + y1) - y2;

if (Z(x2, y2) > Z(kx, ky)) { x2 = kx; y2 = ky; global.iter++; break; }

//отражение относительно 2

kx = (x0 + x2) - x1; ky = (y0 + y2) - y1;

if (Z(x1, y1) > Z(kx, ky)) { x1 = kx; y1 = ky; global.iter++; break; }

//отражение относительно 1

kx = (x1 + x2) - x0; ky = (y1 + y2) - y0;

if (Z(x0, y0) > Z(kx, ky)) { x0 = kx; y0 = ky; global.iter++; break; }

//уменьшаем треугольник

global.al = global.al / 2;

x1 = (x0 + x1) / 2; y1 = (y0 + y1) / 2;

x2 = (x0 + x2) / 2; y2 = (y0 + y2) / 2;

}

richTextBox2.Text = richTextBox2.Text + Convert.ToString(global.iter) + ") x0=" + Convert.ToString(x0) + " x1=" + Convert.ToString(x1) + " x2=" + Convert.ToString(x2) + "; y0=" + Convert.ToString(y0) + " y1=" + Convert.ToString(y1) + " y2=" + Convert.ToString(y2) + " z(x0,y0)=" + Convert.ToString(Z(x0, y0)) + " z(x1,y1)=" + Convert.ToString(Z(x1, y1)) + " z(x2,y2)=" + Convert.ToString(Z(x2, y2)) + " al=" + Convert.ToString(global.al) + (char)13; }

global.x = x0; global.y = y0; }

private void button2_Click(object sender, EventArgs e)

{ global.iter = 0;

global.al = Convert.ToDouble(textBox7.Text);

global.e = Convert.ToDouble(textBox8.Text);

if (radioButton4.Checked) {Spusk(Convert.ToDouble(textBox6.Text),Convert.ToDouble(textBox5.Text)); }

if (radioButton3.Checked)

Hyg(Convert.ToDouble(textBox6.Text), Convert.ToDouble(textBox5.Text));

if (radioButton5.Checked) Sym(Convert.ToDouble(textBox6.Text), Convert.ToDouble(textBox5.Text));

label9.Text = "Минимум: (" + Convert.ToString(global.x) + ";" + Convert.ToString(global.y) + " f(x,y)=" + Convert.ToString(Z(global.x, global.y)) + "), число итераций: " + Convert.ToString(global.iter); } }}

Приложение Б

procedure TForm1.Button1Click(Sender: TObject);

begin

a:=false;

l:=0.05;

al:=1; e:=0.01; gm:=2; bt:=0.5;

x:=1.16166; y:= 1.15185;

iter:=0;

xl:= x; yl:= y; xg:= xl + l; yg:= yl;

xh:= xl + l / 2; yh:= yl + l * Sin(60);

Sym(x,y);

ZZ(x,y); //считаем значение функции в найденной точке

end;

procedure TForm1.Sym(x,y:real);

label

ext,B;

begin

//поиск наименьшего

B: mx0:= xl; my0:= yl; mx1:= xg; my1:= yg; mx2:= xh; my2:= yh;

ZZ(mx0, my0); z1:=z; ZZ(mx1, my1); z2:=z; ZZ(mx2, my2); z3:=z;

if ((z1 < z2) and (z2 z1)) then begin xl:= mx0; xg:= mx1; xh:= mx2; yl:= my0; yg:= my1; yh:= my2; end;

if ((z1 z3) and (z3 > z1)) then begin xl:= mx0; xg:= mx2; xh:= mx1; yl:= my0; yg:= my2; yh:= my1; end;

if ((z1 > z2) and (z2 < z3) and (z3 < z1)) then begin xl:= mx1; xg:= mx2; xh:= mx0; yl:= my1; yg:= my2; yh:= my0; end;

if ((z1 > z2) and (z2 z1)) then begin xl:= mx1; xg:= mx0; xh:= mx2; yl:= my1; yg:= my0; yh:= my2; end;

if ((z1 z3) and (z3 < z1)) then begin xl:= mx2; xg:= mx0; xh:= mx1; yl:= my2; yg:= my0; yh:= my1; end;

if ((z1 > z2) and (z2 > z3) and (z3 < z1)) then begin xl:= mx2; xg:= mx1; xh:= mx0; yl:= my2; yg:= my1; yh:= my0; end;

Richedit1.Lines.Add(IntToStr(iter));

Richedit1.Lines.Add(FloatToStr(xl)+' '+FloatToStr(yl)+' '+FloatToStr(zl));

Richedit1.Lines.Add(FloatToStr(xg)+' '+FloatToStr(yg)+' '+FloatToStr(zg));

Richedit1.Lines.Add(FloatToStr(xh)+' '+FloatToStr(yh)+' '+FloatToStr(zh));

Richedit1.Lines.Add('');

x0:=(xl+xg)/2; y0:=(yl+yg)/2;

xr:=(1+al)*x0-al*xh; yr:=(1+al)*y0-al*yh;

ZZ(xl,yl); zl:=z; ZZ(xg,yg); zg:=Z; ZZ(xh,yh); zh:=z; ZZ(xr,yr); zr:=z;

if zr

{1} begin

//растяжение

xe:=gm*xr+(1-gm)*x0; ye:=gm*yr+(1-gm)*y0; ZZ(xe,ye); ze:= z;

if ze

{2} begin

xh:=xe; yh:=ye; ZZ(xh,yh); zh:=z;

xl:=gm*xl+(1-gm)*x0; yl:=gm*yl+(1-gm)*y0;ZZ(xl,yl); zl:=z;

xg:=gm*xg+(1-gm)*x0; yg:=gm*yg+(1-gm)*y0; ZZ(xg,yg); zg:=z;

Shod(xl,xg,xh,yl,yg,yh);

if a=true then goto ext else begin inc(iter); goto B; end;

{2} end

else

{3} begin

xh:=xr; yh:=yr; ZZ(xh,yh); zh:=z;

Shod(xl,xg,xh,yl,yg,yh);

if a=true then goto ext else begin inc(iter); goto B; end;

{3} end;

{1} end;

if ((zr>zl)and(zr<=zg)) then

begin

xh:=xr; yh:=yr; ZZ(xh,yh); zh:=z;

Shod(xl,xg,xh,yl,yg,yh);

if a=true then goto ext else begin inc(iter); goto B; end;

end;

if ((zr>zl)and(zr>zg)) then

{4E} begin

if zr

//сжатие

xc:=bt*xh+(1-bt)*x0; yc:=bt*yh+(1-bt)*y0; ZZ(xc,yc); zc:=z;

if zc

{5Ж} begin

xh:=xc; yh:=yc; ZZ(xh,yh); zh:=z;

xl:=bt*xl+(1-bt)*x0; yl:=bt*yl+(1-bt)*y0;ZZ(xl,yl); zl:=z;

xg:=bt*xg+(1-bt)*x0; yg:=bt*yg+(1-bt)*y0; ZZ(xg,yg); zg:=z;

Shod(xl,xg,xh,yl,yg,yh);

if a=true then goto ext else begin inc(iter); goto B; end;

{5} end

{6З} else begin

//уменьшение

l:=l/2;

xh:=(xl+xh)/2; xh:=(xl+xh)/2; ZZ(xh,yh); zh:=z;

xg:=(xl+xg)/2; yg:=(yl+yg)/2; ZZ(xg,yg); zg:=z;

{6} end;

Shod(xl,xg,xh,yl,yg,yh);

if a=true then goto ext else begin inc(iter); goto B; end;

{4} end;

ext: Richedit1.Lines.Add(FloatToStr(xl));

Richedit1.Lines.Add(FloatToStr(yl));

Richedit1.Lines.Add(FloatToStr(zl));

Richedit1.Lines.Add(IntToStr(iter));

end;

procedure TForm1.ZZ(x,y:real);

begin

z:= 2.5 * x*x + 2 * x * y + 3.1 * y*y -2* x-3*y;

end;

procedure TForm1.Shod(xl,xg,xh,yl,yg,yh:real);

var

sigma:real;

begin

ZZ(xl,yl); zl:=z; ZZ(xg,yg); zg:=Z; ZZ(xh,yh); zh:=z;

sigma:=sqrt((sqr(zl-((zl+zg+zh)/2+1))+sqr(zl-((zl+zg+zh)/2+1))+sqr(zg-((zl+zg+zh)/2+1))+sqr(zh-((zl+zg+zh)/2+1)))/3); if sigma

Приложение В

unit Unit1;

type

procedure Button1Click(Sender: TObject);

procedure ZZ(x,y,z:real);

procedure Sym(x,y,z:real);

end;

var

X, y,z:real;

z_:real; //значение функции

iter:integer; //число итераций

s,gm,x0,x1,x2,x3:real; //координаты точек

y0,y1,y2,y3:real;

z0,z1,z2,z3:real; // треугольника

al, e:real; // длина стороны симпликса(треугольника)

kx,ky,kz, zz1,zz2:real; //координаты точки k

a,b:boolean; //для цикла

implementation

procedure TForm1.Sym(x,y,z:real);

label

l;

var

a:array[1..4,1..4] of real;//z()xyz ; 1234

k,i:integer;

buf:real;

changed:boolean;

{1} begin

x0:= x; y0:= y;z0:=z;

x1:= x0 + al; y1:= y0;z1:=z;

x2:= x0 + al / 2; y2:= y0 + al * Sin(60);z2:=z;

x3:= x0 + al/ 2; y3:=y0 ;z3:=z0 + al * Sin(60) ;

while (true) do

//for i:=1 to 100 do

{2} begin

ZZ(x0, y0,z0); a[1,1]:=z_; a[2,1]:=x0; a[3,1]:=y0; a[4,1]:=z0;

ZZ(x1, y1,z1); a[1,2]:=z_; a[2,2]:=x1; a[3,2]:=y1; a[4,2]:=z1;

ZZ(x2, y2,z2); a[1,3]:=z_; a[2,3]:=x2; a[3,3]:=y2; a[4,3]:=z2;

ZZ(x3, y3,z3); a[1,4]:=z_; a[2,4]:=x3; a[3,4]:=y3; a[4,4]:=z3;

//сортировка

repeat

changed:=FALSE;

for k:=1 to 3 do

if a[1,k] > a[1,k+1] then

begin

buf := a[1,k]; a[1,k] := a[1,k+1]; a[1,k+1] := buf;

buf := a[2,k]; a[2,k] := a[2,k+1]; a[2,k+1] := buf;

buf := a[3,k]; a[3,k] := a[3,k+1]; a[3,k+1] := buf;

buf := a[4,k]; a[4,k] := a[4,k+1]; a[4,k+1] := buf;

changed := TRUE;

end;

until not changed;

x0:=a[2,1]; y0:=a[3,1]; z0:=a[4,1];

x1 :=a[2,2]; y1:=a[3,2]; z1:=a[4,2];

x2:=a[2,3]; y2:=a[3,3]; z2:=a[4,3];

x3 :=a[2,4]; y3:=a[3,4]; z3:=a[4,4];

ZZ(x3, y3,z3);

//проверка на выход

if (al <= e)or(z_<0) then break;

while (true) do

{3} begin

//отражение относительно 0

kx:= 2/3*(x2+x1+x3)-x0; ky:= 2/3*(y2+y1+y3)-y0; kz:= 2/3*(z2+z1+z3)-z0;

ZZ(x0, y0,z0); zz1:=z_; ZZ(kx, ky,kz); zz2:=z_;

if (z_<0) then goto l;

if (zz1 0)and(ky>0)and(kz>0)and((6*kx*ky+4*kz*kx)<=s) then begin x0:= kx; y0:= ky; z0:= kz; inc(iter); break; end;

//отражение относительно 1

kx:= 2/3*(x2+x0+x3)-x1; ky:= 2/3*(y2+y0+y3)-y1; kz:= 2/3*(z2+z0+z3)-z1;

ZZ(x1, y1,z1); zz1:=z_; ZZ(kx, ky,kz); zz2:=z_; if (z_<0) then goto l;

if (zz1 0)and(ky>0)and(kz>0)and((6*kx*ky+4*kz*kx)<=s)then begin x1:= kx; y1:= ky; z1:= kz;inc(iter); break; end;

//отражение относительно 2

kx:= 2/3*(x0+x1+x3)-x2; ky:= 2/3*(y0+y1+y3)-y2; kz:= 2/3*(z0+z1+z3)-z2;

ZZ(x2, y2,z2); zz1:=z_; ZZ(kx, ky,kz); zz2:=z_;if (z_<0) then goto l;

if (zz1 0)and(ky>0)and(kz>0)and((6*kx*ky+4*kz*kx)<=s)then begin x2:= kx; y2:= ky; z2:= kz;inc(iter); break; end;

//отражение относительно 3

kx:= 2/3*(x2+x1+x0)-x3; ky:= 2/3*(y2+y1+y0)-y3; kz:= 2/3*(z2+z1+z0)-z3;

ZZ(x3, y3,z3); zz1:=z_; ZZ(kx, ky,kz); zz2:=z_;if (z_<0) then goto l;

if (zz1 0)and(ky>0)and(kz>0)and((6*kx*ky+4*kz*kx)<=s) then begin x3:= kx; y3:= ky; z3:= kz;inc(iter); break; end;

//уменьшаем треугольник

al:= al / 2;

x1:= x0 + al; y1:= y0;z1:=z0;

x2:= x0 + al / 2; y2:= y0 + al * Sin(60);z2:=z0;

x3:= x0 + al/ 2; y3:=y0 ;z3:=z0 + al * Sin(60);break; inc(iter);

{3} end;

{2} end;

l: x:= x3; y:= y3;

{1} end;

procedure TForm1.ZZ(x,y,z:real);

begin z_:=(4/3*x*x*z+7/3*y*x*x)-gm*sqr(s-(6*x*y+4*z*x)); end;

procedure TForm1.Button1Click(Sender: TObject);

begin

RichEdit1.Text :='';iter:=0;

gm:=StrToFloat(Edit1.Text);s:=StrToFloat(Edit2.Text);al:=0.05;e:=0.01;

x:=StrToFloat(Edit3.Text);y:=StrToFloat(Edit4.Text);z:=StrToFloat(Edit5.Text);

Sym(x,y,z);ZZ(x3,y3,z3); //считаем значение функции в найденной точке

RichEdit1.Text:= RichEdit1.Text + 'Число итераций '+ IntToStr(iter) + #13;

RichEdit1.Text:= RichEdit1.Text + 'x3= '+ FloatToStr(x1) +'; y3= '+ FloatToStr(y1)+'z3= '+ FloatToStr(z1) + #13;

ZZ(x3,y3,z3); RichEdit1.Text:= RichEdit1.Text +'f(x,y,z)= '+ FloatToStr(z_) +'('+FloatToStr(6*x3*y3+4*z3*x)+')'+ #13;end;end.

Характеристики

Тип файла
Документ
Размер
6,32 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6644
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее