85976 (612617), страница 8

Файл №612617 85976 (Отношения эквивалентности и толерантности и их свойства) 8 страница85976 (612617) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Пусть – некоторое множество объектов, в котором некоторые объекты взаимозаменимы. Обозначим через множество всех объектов, взаимозаменимых с объектом . Очевидно, что и объединение всех (при всевозможных ) совпадает со всем множеством : .

Предположим, что . Это значит, что существует некоторый элемент такой, что он одновременно принадлежит и . Значит, взаимозаменим с и взаимозаменим с . Следовательно, взаимозаменим с , а значит и с любым элементом из . Таким образом, . Симметричным рассуждением можно показать, что . Таким образом, встречающиеся в объединении множества либо целиком совпадают, либо не пересекаются. Проведенное выше рассуждение наводит на мысль, как можно строго определить отношение одинаковости, или взаимозаменимости. В связи с этим обратим внимание на способ употребления слов в математике. До сих пор мы имели дело со словами "одинаковость", "взаимозаменимость". Эти слова никак не определялись, а использовались так, как мы привыкли их употреблять в обыденной речи. Но с точки зрения математических понятий слово "эквивалентность" является экспликацией (точным определением) понятия одинаковости.

3.2 От сходства к толерантности

Например, две новые "Волги" одного выпуска и цвета с точки зрения покупателя вполне одинаковы и, стало быть, взаимозаменимы. Но две "Волги" разного выпуска (или новая и старая "Волги" одного выпуска) только похожи. При отсуствии необходимого выбора одна может заменить другую, если покупатель готов согласиться с подобной заменой.

Двое близнецов бывают настолько одинаковыми, что без всякого риска могут сдавать экзамены друг за друга. Если два студента только похожи, то такая жульническая проделка, хотя и осуществима, но рискована.

Если для объектов указано только сходство, то невозможно их разбить на четкие классы так, что внутри класса объекты похожи, а между объектами разных классов сходства нет. В случае сходства возникает размытая ситуация без четких границ.

Каждый элемент множества несет определенную информацию о похожих на него элементах. Но не всю информацию), как в случае одинаковых элементов. Здесь уже нет дилеммы: "Все или ничего" или "Полная информация – отсутствие информации", Здесь возможны разные степени информации, которую одни элемент содержит относительно другого.

Превосходная степень от сходства – неразличимость, а вовсе не одинаковость, как может показаться на первый взгляд. Одинаковость – свойство качественно иное. Дело в том, чю неразличимые объекты (так же, как и сходные) не разбиваются, вообще говоря, на классы так, чтобы в каждом классе элементы не различались, а элементы разных классов заведомо различались.

В самом деле. Возьмем множество точек на плоскости. Пусть величина лежит ниже порога разрешимости глаза, т.е. – такое расстояние, при котором точки, находящиеся на этом расстоянии, неразличимы зрительно (при выбранном удалении плоскости от наблюдателя). Возьмем теперь точек, лежащих на одной прямой и отстоящих (каждая oт соседних) на расстоянии . Каждая пара соседних точек неразличима, но если достаточно велико, то первая и последняя точки будут отстоять друг от друга на метр и заведомо будут различимы. Разумеется, одинаковость есть частный случаи неразличимости и сходства.

Традиционный подход к изучению сходства или неразличимости состоит в том, чтобы сначала определить меру сходства, а затем исследовать взаимное расположение сходных объектов. Английский математик Зиман, изучая модели зрительного аппарата, предложил аксиоматическое определение сходства. Тем самым свойства сходства стало возможным изучать независимо от того, как конкретно оно задано в тон или иной ситуации: расстоянием между объектами, совпадением каких-то признаков или субъективным мнением наблюдателя.

Так же, как переход от расплывчатого понятия "одинаковость" к точно определенному тину отношении сопровождался введением пового термина "эквивалентность", математическое отношение, соответствующее нашему интуитивному представлению о сходстве или неразличимости, получило у Зимана название "толерантность". Иначе говоря, толерантность является экспликацией понятия сходства или неразличимости.

Заключение

В данной курсовой работе были рассмотрены и изучены понятия отношений эквивалентности и толерантности. В главе первой изложена информация об отношении эквивалентности: основные определения и связь между ними, свойства эквивалентности, операции над эквивалентностями, отношения эквивалентности на числовой прямой. В следующей главе содержится основной материал об отношении толерантности: основные определения и примеры толерантностей, их свойства, установлены операции над толерантностями, раскрыты понятия пространства и класса толерантности. Также установлена связь отношений эквивалентности и толерантности. В последней главе объяснены математические термины "эквивалентность" и "толерантность" с помощью таких привычных для всех слов как "одинаковость" и "сходство". С помощью этих же слов мы установили, в каких областях знаний и практики человека нашли свое применение термины "эквивалентность" и "толерантность".

Литература

1. Шрейдер Ю.А. Равенство, сходство и порядок. – М.:Наука, 1971

2. Бурбаки Н. Теория множеств. – М.:Мир, 1965

3. Общая алгебра. Т. 1./ О.В. Мельников, В.Н. Ремесленников, В.А. Роляньков и др. Под общ. ред. Л.А. Сибриянова. – М.:Наука, 1999 – 592 с.

Характеристики

Тип файла
Документ
Размер
15,1 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее