85875 (612596), страница 3

Файл №612596 85875 (Теория вероятностей. От Паскаля до Колмогорова) 3 страница85875 (612596) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Монмор в своей книге «Обзор анализа азартных игр» использовал введенное Бернулли понятие вероятности и применил его к решению достаточно сложных задач. В частности Монмор рассмотрел и правильно решил следующую задачу: имеется предметов, пронумерованных числами от 1 до . Спрашивается, чему равна вероятность того, что при последовательном вынимании этих предметов наудачу (без возвращения) хотя бы один предмет будет вынут так, что номер вынимания совпадет с присвоенным ему номером. Эта вероятность оказалась равной .

А. Муавр принял классическое определение вероятности, данное Бернулли, и вероятность события определил в точности так, как это делаем мы теперь. Он писал: «Следовательно, мы строим дробь, числитель которой будет число случаев появления события, а знаменатель число всех случаев, при которых оно может появиться или не появиться, такая дробь будет выражать действительную вероятность его появления». Муавр, как и Бернулли не заострял внимание на то, что шансы должны быть равновероятными. Это замечание впервые было введено в определение классической вероятности лишь П. Лапласом в его «Аналитической теории вероятностей». Лагранж об этом еще не задумывался и давал определение вероятности в точности по Муавру. По-видимому, на Лапласа повлияла дискуссия, начатая Д`Аламбером, который при решении задачи о вероятности выпадения (при бросании двух монет) герба на одной из монет и решки на другой, определил ее равной 1/3. Это он мотивировал тем, что имеется лишь три возможности:

1) на обеих монетах выпадает герб;

2) на обеих монетах выпадает решка;

3) на одной монете выпадает герб, а на другой решка.

7. Формирование понятия геометрической вероятности

Уже в первой половине 18 века выяснилось, что классическое понятие вероятности имеет ограниченную область применений и возникают ситуации, когда оно не действует, а потому необходимо какое-то естественное его расширение. Обычно считают, что таким толчком послужили работы французского естествоиспытателя Ж. Бюффона (1707–1788), в которых он сформулировал знаменитую задачу о бросании иглы на разграфленную плоскость и предложил ее решение. Однако, задолго до рождения Бюффона появилась работа, в которой фактически уже был поставлен вопрос о нахождении геометрической вероятности. В 1692 г. в Лондоне был опубликован английский перевод книги Х. Гюйгенса «О расчетах в азартных играх», выполненный Д. Арбутнотом (1667–1735). В конце первой части переводчик добавил несколько задач, среди которых была сформулирована задача совсем иной природы, по сравнению с теми, которые были рассмотрены великим автором. Он назвал эту задачу трудной и поместил ее в дополнении «для того, чтобы она была решена теми, кто считает такого рода проблемы достойными внимания». Задача, предложенная Арбутнотом состоит в следующем: на плоскость наудачу бросается прямоугольный параллелепипед, с ребрами, равными , , . Спрашивается, как часто параллелепипед будет выпадать гранью ? Сам Арбутнот не сделал даже попытки решить придуманную им задачу. Это было осуществлено значительно позднее Т. Симпсоном (1710–1761) в книге «Природа и законы случая». Идея решения состоит в следующем: опишем около параллелепипеда сферу и спроектируем из центра на поверхность ее все ребра, боковые грани и основания. В результате поверхность сферы разобьется на шесть непересекающихся областей, соответствующих граням параллелепипеда. «Нетрудно заметить, что определенная часть сферической поверхности, ограниченная траекторией, описанной таким образом радиусом, будет находиться в таком же отношении к общей площади поверхности, как вероятность появления некоторой грани к единице». Здесь заключены принципы разыскания геометрических вероятностей: вводится мера множества благоприятствующих событию случаев и берется ее отношение к мере множества всех возможных случаев. В нашем случае полная мера сводится к площади поверхности шара.

Бюффон дважды публиковал работы, посвященные геометрическим вероятностям. Первая публикация относится к 1733 г., когда он сделал в Парижской академии наук доклад, напечатанный под названием «Мемуар об игре под названием франк-карро». Цель, которую ставил перед собой Бюффон, состояла в том, чтобы показать, что «геометрия может быть использована в качестве аналитического инструмента в области теории вероятностей», в то время, как до тех пор «геометрия казалась мало пригодной для этих целей», поскольку для них использовалась только арифметика. Игра франк-карро состоит в следующем: пол разграфлен на одинаковые фигуры. На пол бросается монета, ее диаметр меньше каждой из сторон и монета целиком укладывается внутрь фигуры. Чему равна вероятность того, что брошенная наудачу монета пересечет одну или две стороны фигуры?

Для определенности рассмотрим покрытие плоскости прямоугольниками со сторонами , . Легко подсчитать, что площадь полосы между основным прямоугольником со сторонами, параллельными сторонам основного на расстоянии от каждой из его сторон и целиком расположенного внутри основного, равна . Легко понять, что центр монеты, попав внутрь малого прямоугольника, не только не пересечет, но даже не коснется сторон основного. Значит, вероятность того, что монета пересечет по меньшей мере одну из сторон основного прямоугольника равна .

Вторая задача, сформулированная Бюффоном, состоит в следующем: плоскость разграфлена равноотстоящими параллельными прямыми. На плоскость наудачу бросается игла. Один игрок утверждает, что игла пересечет одну из параллельных прямых, другой, что не пересечет. Определить вероятность выигрыша каждого из игроков. Менее известна задача об игре, когда игла бросается на плоскость, разграфленную на квадраты. В решении этой задачи Бюффон допустил ошибку, позднее исправленную Лапласом.

После Бюффона задачи на геометрические вероятности стали систематически включаться в трактаты и учебники по теории вероятностей. В прекрасном для своего времени учебнике «Основания математической теории вероятностей» (1846) В.Я. Буняковского (1804–1889) имеется большой раздел, посвященный геометрической вероятности. В него включена задача Бюффона о бросании иглы и частный случай игры франк-карро, когда плоскость разбита на равнобедренные треугольники.

Серьезный шаг в развитии геометрических вероятностей связан с именами Ламе (1795–1870), Барбье, Д. Сильвестра (1814–1897), М. Крофтона, которые не просто поставили новые задачи, но и привлекли к их решению понятие меры множества. На базе их рассмотрений позднее возникла новая ветвь геометрии, получившая название интегральная геометрия.

Сильвестр первый после Бюффона расширил тематику задач на геометрические вероятности. Им была предложена задача о четырех точках или задача Сильвестра: четыре точки взяты наудачу внутри выпуклой области. Чему равна вероятность того, что, взяв эти точки в качестве вершин, можно составить выпуклый четырехугольник?

Сильвестр отчетливо понимал, что при вычислении геометрических вероятностей приходится брать отношение площадей или объемов тех областей, которые благоприятствуют событию и в которых помещаются всевозможные события. Фактически так поступали и раньше. Но при этом произносили другие слова, которые или не имели определенного смысла или же не соответствовали производимым действиям. Сравнив результаты вычислений для различных областей, Сильвестр предложил найти те области, для которых вероятность получения выпуклого четырехугольника достигает максимума или минимума. Первые результаты принадлежат Крофтону. Он доказал, что минимум достигается для круга. Там же он высказал предположение, что минимум достигается и для эллипса. Это предложение было доказано лишь В. Блашке (1923). Дельтейль показал, что максимальная вероятность формирования выпуклого четырехугольника достигается для треугольной области. Несомненно, что в 19 веке на развитие проблематики геометрических вероятностей особое влияние оказал Крофтон. Он начал изучать пересечение случайными прямыми заданных выпуклых контуров.

На необходимость совершенствования понятия геометрической вероятности несомненное влияние оказала книга Ж. Бертрана (1822–1900), в которой на хорошо подобранных примерах было показано, что логически понятие геометрической вероятности не выдерживает критики. Играя на неопределенности терминологии, казалось бы для одной и той же задачи, ему удалось получить несколько разных ответов. В качестве основной мишени им была выбрана задача о проведении наудачу хорды внутри круга. Критика Бертрана привлекла внимание математиков к общим вопросам логического обоснования теории вероятностей.

В 20 веке интерес к геометрическим вероятностям не ослабел, а вырос, поскольку, помимо чисто математического интереса, они приобрели серьезное прикладное значение в физике, биологии, медицине, инженерном деле и т.д.

8. Основные теоремы теории вероятностей

Следующий важный вопрос: кто и когда выделил в теории вероятностей основные ее теоремы сложения, умножения и полной вероятности? Формулировки этих теорем не удалось заметить ни в переписке Ферма с Паскалем, ни в трактате Гюйгенса. Однако зачатки этих теорем можно проследить буквально с первых шагов теории вероятностей как математической науки.

Так в работах Паскаля можно увидеть, что он отчетливо понимал как следует подсчитывать число благоприятствующих шансов для события , если нам известны шансы для несовместимых событий , составляющих событие . Это, конечно, еще не теорема сложения, но важный шаг на пути ее формулировки. В работах Я. Бернулли и Н. Бернулли дается отчетливая формулировка правило числения вероятности противоположного события, если известна вероятность прямого.

Первая четкая и окончательная формулировка теорема сложения вероятностей находится в работе Т. Байеса (1702–1761), носящей название «Опыт решения задач по теории вероятностей покойного достопочтенного мистера Байеса, члена Королевского общества. Сообщено мистером Прайсом в письме Джону Кентону, магистру искусств, члену Королевского общества». В этой работе содержится определение несовместимых событий. Байес употребляет другой термин «неплотные события». По Байесу «несколько событий являются неплотными, если наступление одного из них исключает наступление других». Байес сформулировал теорему сложения в следующем виде: «Если несколько событий являются неплотными, то вероятность того, что наступит какое-то из них, равно сумме вероятностей каждого из них».

Четкое выделение теоремы умножения было осуществлено Муавром в 1718 г. Во введении к «Доктрине шансов» он определил важное понятие независимости случайных событий: «Мы скажем, что два события независимы, когда каждое из них не имеет никакого отношения к другому, а появление одного из них не оказывает никакого влияния на появление другого». Еще более определенно им дано определение зависимых событий: «два события зависимы, когда они связаны друг с другом и когда вероятность появления одного из них изменяется при появлении другого». Теорему умножения Муавр сформулировал следующим образом: «…вероятность появления двух независимых событий равна произведению вероятности появления одного из них на вероятность того, что другое должно появиться, если первое из них уже появилось. Это правило может быть обобщено на случай нескольких событий».

О вероятности совместного наступления нескольких событий Муавр писал следующее «…надо обозначить одно из них как первое, другое как второе и т.д. Тогда вероятность появления первого должна рассматриваться как независимая от остальных, вторая – в предположении, что первое произошло, третье – в предположении наступления первого и второго и т.д. Следовательно, вероятность наступления всех событий равна произведению всех только что указанных вероятностей». Муавр отметил, что разыскание условных вероятностей, как правило, представляет собой сложное занятие.

Формулировка теоремы умножения у Байеса такая же, как у Муавра. Единственно, в чем Байес пошел дальше Муавра это в формулировке следствия о вычислении вероятности по вероятностям и . Это предложение дало основание приписывать Байесу формулы, носящие его имя. В действительности у него их нет, поскольку он не знал формулы полной вероятности.

Результат, приписываемый Байесу, по-видимому, впервые получил современную формулировку у Лапласа в его «Опыте философии теории вероятностей». В главе «Общие принципы теории вероятностей» он сформулировал принцип, который относится к вероятности гипотез, или, как писал Лаплас, вероятности причин, словесно сформулировал известное «правило Байеса». Более того, этот принцип Лапласа содержит и формулу полной вероятности.

Таким образом, основные принципы действия с вероятностями вычленялись длительным путем. Их многократно использовали при решении отдельных задач, но не формулировали их в качестве особых предложений. Потребовалось почти целое столетие, чтобы после введения в науку понятия вероятности сформулировать для этого понятия систему правил действия с ним. Такие правила широко использовались фактически, но потребности в их формулировании не ощущали. Попутно при этом вводились и дополнительные понятия, которые позволяли глубже вникать в природу вещей. В нашем случае этими понятиями являются понятия несовместимости и независимости случайных событий.

9. Задача о разорении игрока

Серьезную роль в развитии теории вероятностей играла задача о разорении игрока, она позволяла оттачивать методы решения сложных вопросов и в какой-то мере являлась исходным пунктом для развития теории случайных процессов. Именно в этой задаче впервые начали изучать состояние системы в зависимости от времени. Точнее положение игроков после заданного числа партий. Эта задача была впервые сформулирована в Гюйгенсом в книге «О расчетах в азартных играх». Этой задачей занимались многие выдающиеся математики Я. Бернулли, Н. Бернулли, Муавр, Лаплас и др.

Характеристики

Тип файла
Документ
Размер
1,68 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6835
Авторов
на СтудИзбе
274
Средний доход
с одного платного файла
Обучение Подробнее