85776 (612570), страница 2

Файл №612570 85776 (Матричные антагонистические игры с нулевой суммой в чистых стратегиях) 2 страница85776 (612570) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

в) интересы сторон, представленные функциями выигрыша (платежа) для каждого из игроков.

В теории игр предполагается, что функции выигрыша и множество стратегий, доступных каждому из игроков, общеизвестны, т.е. каждый игрок знает свою функцию выигрыша и набор имеющихся в его распоряжении стратегий, а также функции выигрыша и стратегии всех остальных игроков, и в соответствии с этой информацией организует свое поведение.

Теория игр впервые была систематически изложена Дж. фон Нейманом и О. Монгерштерном в 1944 г., хотя отдельные результаты были опубликованы еще в 20-х годах. Нейман и Моргенштерн написали оригинальную книгу, которая содержала главным образом экономические примеры, поскольку экономическому конфликту легче всего придать численную форму. Во время второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, которые увидели в ней аппарат для исследования стратегических решений. Затем главное внимание снова стало уделяться экономическим проблемам.

ГЛАВА 1. МАТРИЧНЫЕ АНТАГОНИСТИЧЕСКИЕ ИГРЫ

1.1 Принятие решений

Принятие решений – каждодневная деятельность человека, часть его повседневной жизни. Простые решения принимаются легко, часто автоматически; в сложных и ответственных случаях человек обращается за помощью к друзьям, родственникам, опытным людям, книгам для подтверждения своего решения, несогласия с ним или советом. Решения разрабатываются и реализуются с разной степенью профессионализма, поэтому их диапазон практически неограничен – от необдуманных до детально разработанных.

Что же такое «наилучшее» решение? В исследованиях операций «наилучшим» считается решение, доставляющее оптимум функции, выражающей цель системы. Более общее определение «правильного» или «наилучшего» решения в смысле принятия решений будем считать выбор такой альтернативы из числа возможных, в которой с учетом всех разнообразных факторов и противоречивых требований будет оптимизирована общая ценность, то есть она будет в максимальной степени соответствовать достижению поставленной цели. Отметим, что в отличии от исследования операций, в теории принятия решений не существует абсолютно лучшего решения. Решение является лучшим лишь для конкретного лица принимающего решение, в отношении поставленных им целей, при заданных условиях. Эта субъективная оценка оказывается в настоящее время единственно возможной основой объединения разнородных физических параметров решаемой проблемы в единую модель, позволяющую оценивать варианты решений.

Альтернативы.

Альтернатива – это один из возможных способов достижения цели или один из конечных вариантов решений. Альтернативы отличаются друг от друга последовательностью и приемами использования активных ресурсов. Для любой задачи принятия решений должна существовать тройка: цель, критерии, альтернативы. Если отсутствует один из компонентов, то проблема не поставлена. При наличии менее двух альтернатив, отсутствует выбор.

Альтернативы могут быть зависимыми и независимыми. Если действие над какой-либо альтернативой не влияет на качество других, то такая альтернатива является независимой. При зависимых альтернативах оценки одних из них оказывают влияние на качество других.

Задачи принятия решений существенно различаются в зависимости от наличия альтернатив на момент выработки политики и принятия решений. В некоторых задачах все возможные альтернативы известны и из них производится выбор наилучшей. Например, можно выбирать лучший университет, наиболее надежный банк или же банк с оптимальным соотношением «выгода-риск», наиболее благоприятный район для покупки квартиры и т.д. Существует множество задач, в которых все альтернативы или их часть появляются после принятия решений. Например, требуется разработать правила отбора лиц на предоставление грантов на конкурсной основе. Альтернативы в такой задаче появляются после разработки и декларации правил отбора.

Также существуют задачи, когда на основе рассмотрения имеющихся альтернатив возникают новые альтернативы. Первичные альтернативы не всегда удовлетворяют участников процесса выбора. Рассматривая их, участники понимают, чего же все-таки не хватает, что реализуемо при данной ситуации, а что нет. Этот класс задач можно назвать задачами с конструируемыми альтернативами.

Критерии

В современной науке о принятии решений считается, что варианты решений (альтернативы) характеризуются различными показателями их привлекательности для ЛПР (лицо, принимающее решение). Эти показатели называют признаками, факторами, атрибутами, критериями.

Пусть задано некоторое конечное множество альтернатив . Из множества или любого его подмножества необходимо выделить одно или несколько вариантов решений в некотором смысле лучших или более соответствующих каким-либо заранее оговоренным условиям. Для решения этой задачи обычно используется следующий подход:

Множество вариантов проецируется на числовую ось, так что каждому варианту соответствует конкретная точка числовой оси. В одну и ту же точку может либо не может проецироваться более одного варианта. Числовая ось, на которую спроецировано множество вариантов , называется шкалой. Сам процесс проецирования, то есть приписывания элементам из числовых значений, соответствующих точкам числовой оси, в которые они проецируются – шкалированием. Если после такого проецирования упорядочить все варианты из по величине приписанных им числовых оценок и сохранить за вариантами лишь их порядковый номер, то образованная таким образом шкала называется порядковой или ранговой.

Если вариант считается тем «лучше» или тем более соответствующим заранее фиксированной цели выбора, чем большая (или меньшая) числовая или ранговая оценка приписывается варианту, то шкала называется критерием для выбора или критериальной шкалой.

Рассмотрим вариант и выразим его критериальную оценку, т.е. числовое значение той точки шкалы, в которую вариант спроецирован через . Обозначим через функцию, заданную на всех вариантах из и имеющую числовые значения, определяемые критериальной шкалой. Такая функция и называется критерием.

Критерий – это способ выражения различий в оценке альтернативных вариантов с точки зрения участников процесса выбора, т.е. показатель привлекательности вариантов решений. Именно с помощью критерия ЛПР будет судить о предпочтительности исходов, а значит, и способов проведения операции по решению проблемы. Значимость того или иного из выбранных критериев определяется именно тем, что ЛПР не считает возможным выносить суждения о предпочтительности исхода операции, если именно того или иного критерия оценки недостает.

В профессиональной деятельности выбор критериев часто определяется многолетней практикой, опытом. В подавляющем большинстве задач выбора имеется достаточно много критериев оценок вариантов решений. Существует ряд свойств или требований, которым должен (по возможности) удовлетворять набор критериев. Набор критериев должен быть: полным, действенным, разложимым, неизбыточным и минимальным.

Полнота набора означает, что он должен охватывать все важные аспекты проблемы. Набор критериев является полным, если с его помощью можно показать степень достижения общей цели, то есть набор из критериев полон, если, зная значения n-мерного критерия, связанного с общей целью, ЛПР имеет полное представление о степени достижения общей цели.

Действенность критериев. ЛПР должно понимать смысл критериев и влияние их действий на обсуждаемую проблему. Критерии должны быть такими, чтобы их можно было объяснять другим, особенно в тех случаях, когда важнейшей целью работы является выработка и защита определенной позиции. Поскольку смысл анализа решений помочь ЛПР выбрать лучший курс действий, то и критерии должны служить этой цели.

Разложимость. При использовании n критериев необходимо построить n-мерную функцию предпочтений. Для задач с большим числом критериев полезно произвести декомпозицию задачи и разложить ее на подзадачи, каждая из которых содержит меньшее число критериев. То есть желательно, чтобы набор критериев был разложим.

Неизбыточность. Критерии должны быть определены так, чтобы не дублировался учет одних и тех же аспектов решаемой проблемы.

Минимальная размерность. Желательно, чтобы набор критериев оставался настолько малым, насколько это возможно. Увеличение числа критериев приводит, с одной стороны, к анализу решаемой задачи в более широком плане, с другой стороны, может сильно усложнить и запутать анализ, что приведет к ошибочности результатов.

Формальные методы формирования набора критериев предложить трудно. Они очень сильно зависят от опыта и способности экспертов и, что крайне важно, характера лица, принимающего решения.

Схема процесса принятия решений

В классической книге лауреата нобелевской премии профессора Г. Саймона «The New Science of Management Decision», 1960 процесс принятия решений разбит на четыре фазы: сбор информации (intelligence); поиск и построение альтернатив (design); выбор альтернатив (choice); оценка результатов (review). Первая фаза – сбор информации, сконцентрирована на идентификации проблемы принятия решения и сборе всей доступной информации о ней. При поиске и построении альтернатив (вторая фаза) центральным вопросом становится определение относительно небольшого числа альтернатив, которые следует изучить в деталях. На третьей фазе происходит выбор одного из вариантов решений из множества альтернатив, подготовленных на второй фазе. Последний шаг в процессе принятия решений – это реализация выбранной альтернативы и обобщение опыта, полученного в процессе решения проблемы.

Таким образом, само решение принимается в рамках второй и третьей фаз:

  • конструирование относительно небольшого множества альтернатив;

  • окончательный выбор варианта решения из сформированного множества.

Схематически две эти фазы представлены на рисунке 1. Фазы существенным образом различаются как целями и информацией, так и методами. На фазе, в которой одним из вопросов является выбор относительно небольшого числа альтернатив (эту фазу часто называют early screening). ЛПР должно принять во внимание все возможные пути достижения цели. В процессе же детального анализа и окончательного выбора альтернативы, ЛПР ограничивает себя малым числом подготовленных вариантов решений. Выбору альтернативы из этого числа предшествует их детальное изучение.



Окончательное решение



Построение множества альтернатив

Детальный анализ и выбор



Рис. 1 - Фазы процесса принятия решений

Классификация задач принятия решений

Задачи принятия решений отличаются большим многообразием, классифицировать их можно по различным признакам, характеризующим количество и качество доступной информации. В общем случае задачи принятия решений можно представить следующим набором информации:

где – постановка задачи;

– множество допустимых альтернативных вариантов;

– множество методов измерения предпочтений;

Характеристики

Тип файла
Документ
Размер
4,93 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее