85645 (612535), страница 3

Файл №612535 85645 (Иррациональные уравнения) 3 страница85645 (612535) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

При решении уравнения учащиеся часто необоснованно делят обе части уравнения на выражение, содержащее неизвестное (в данном случае, на ), что приводит к потере корня и приобретению «постороннего». Подобные уравнения, содержащие в обеих частях общий множитель, следует решать переносом всех членов в одну часть и разложением полученного выражения на множители.

Решим каждое уравнение из совокупности.

; .

(1).

Учитывая, что ОДЗ: получаем, что уравнение (1) равносильно совокупности:

. Тогда , не удовлетворяет условию

, данное уравнение не имеет корней.

Следовательно, совокупность примет следующий вид:

Вернемся к системе:

О т в е т: {-3;6}.

2.3 Иррациональные уравнения, которые решаются введением новой переменной

При решении различных видов уравнений: рациональных, тригонометрических, показательных часто используется метод введения новой переменной. Новая переменная в уравнениях иногда действительно очевидна, но иногда ее трудно увидеть, а можно выявить только лишь в процессе каких либо преобразований. Бывает полезно ввести не одну, а две переменные. Видим типичные случаи введения новых переменных в иррациональных уравнениях.

Пример 1. Решить уравнение

Решение. Введем новую переменную. Пусть , , где . Получаем, что .Тогда - не удовлетворяет условию

Выполним обратную замену.

О т в е т:{34}.

Пример 2. Решить уравнение

Решение. Уединение радикала и возведение в степень обеих частей уравнения привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, то можно заметить, что данное уравнение сводиться к квадратному. Действительно, умножим обе части заданного уравнения на 2, получим, что

Введем новую переменную. Пусть Получаем, что . Тогда - не удовлетворяет условию ,

Выполним обратную замену. Тогда ,

Т.к. исходное уравнение равносильно уравнению то проверка полученных корней не нужна.

О т в е т: {-2;3,5}.

Пример 3. Решить уравнение

Решение. Преобразуем данное уравнение.

Введем новую переменную. Пусть, а Получаем, что . Тогда - не удовлетворяет условию .

Выполним обратную замену. .

О т в е т:{1}.

2.4 Уравнения вида , ,

Данные уравнения можно решить при помощи основного метода решения иррациональных уравнений (возведение в квадрат обеих частей уравнения), но иногда их можно решить и другими методами.

Рассмотрим уравнение (1). Пусть - корень уравнения (1). Тогда справедливо числовое равенство . Найдем разность чисел и , обозначив ее , и запишем данное равенство в виде (2).

Используя, что , запишем равенство (2) в виде . Данное равенство означает, что число есть корень уравнения (3).

Таким образом, уравнение (3) является следствием уравнения (1). Складывая эти два уравнения и умножая полученное уравнение на а, получим уравнение (4), также являющееся следствием уравнения (1). Возведя уравнение (4) в квадрат и решив полученное уравнение, надо выполнить проверку найденных корней, т.е. проверить, являются ли его корни корнями уравнения (1).

Замечание. Отметим, что точно также доказывается, что уравнение (4) есть следствие уравнения .

Пример 1. Решить уравнение (5).

Решение. Разность подкоренных выражений и есть

. ,

то уравнение (6) является следствием исходного уравнения. Тогда, складывая уравнения (5) и (6), получим уравнение (7), также являющееся следствием исходного уравнения (5). Возведем обе части уравнения (6) в квадрат, получим уравнение (8), также являющееся следствием исходного уравнения. Решая уравнение (8), получаем, что ,

Проверкой убеждаемся, что оба этих числа являются корнями исходного уравнения.

О т в е т: .

Замечание. Уравнение вида можно решать умножением обеих частей уравнения на некоторое выражение, не принимающее значение ноль (на сопряженное левой части уравнения т.е.

Пример 2. Решить уравнение (8).

Решение. Т.к. , то умножим обе части уравнения на выражение , являющееся сопряженным левой части уравнения (8). . После приведения подобных слагаемых получаем уравнение (9), равносильное исходному, т.к. уравнение действительных корней не имеет. Складывая уравнения (8) и (9) получаем, что . Тогда

О т в е т: .

Замечание. Также уравнения вида можно решать с помощью ОДЗ уравнения и равносильных переходов от одних уравнений к другим.

Пример 3. Решить уравнение

Решение. Найдем ОДЗ переменной х.

ОДЗ: Следовательно,

На ОДЗ обе части уравнения положительны, поэтому после возведения в квадрат получим уравнение: , равносильное для уравнению

Иногда решения уравнения можно найти, решая его на разных числовых промежутках.

Для любого имеем , а . Следовательно, среди нет решений уравнения .

Для имеем . Следовательно, для . . Тогда . Т.к. , то является корнем уравнения , равносильному уравнению для этих х.

О т в е т: .

Пример 4. Решить уравнение

Решение. Преобразуем исходное уравнение.

Возведем обе части данного уравнения в квадрат.

Проверка показывает, что 5 является корнем исходного уравнения.

Замечание. Иногда значительно проще можно решать уравнения вида , если воспользоваться свойствами монотонности функций, а именно тем, что сумма двух возрастающих функций является возрастающей функцией, и всякая монотонная функция каждое свое значение принимает, лишь при одном значении аргумента. Действительно, функции и - возрастающие. Следовательно, их сумма - возрастающая функция.

Значит, исходное уравнение, если имеет корень, то только один. В этом случае, учитывая, что , подбором легко найти, что 5 является корнем исходного уравнения.

О т в е т:{5}.

Пример 5. Решить уравнение

Решение. Если обе части исходного уравнения возвести в квадрат, то получится довольно сложное уравнение. Поступим по-другому: преобразуем уравнение к виду:

Решим неравенство системы.

Решением системы является множество:

.

Решим уравнение системы.

Убеждаемся, что 2 принадлежит множеству решений неравенства (рис.1).

Замечание. Если решать данное уравнение возведением обеих частей в квадрат, то необходимо выполнить проверку. 2 - целое число, поэтому при выполнении проверки трудностей не возникает. А что касается значения , то подстановка его в исходное уравнение приводит к весьма сложным вычислениям. Однако такой подстановки можно избежать, если заметить, что при этом значении правая часть уравнения принимает отрицательное значение: . Тогда как левая часть уравнения отрицательной быть не может. Таким образом, не является корнем уравнения - следствия данного уравнения. Тем более, это значение не может быть корнем исходного уравнения. Итак, корень уравнения - число 2.

О т в е т:{2}.

Пример 6. Решить уравнение

Решение. Найдем ОДЗ переменной х.

ОДЗ:

Следовательно,

Для любых значений из ОДЗ, удовлетворяющих условию , т.е. для из промежутка левая часть уравнения отрицательна, а первая – неотрицательна, значит, ни одно из этих решением уравнения быть не может.

Пусть . Для таких обе части уравнения неотрицательны, и поэтому оно равносильно на этом множестве уравнению: .

Введем новую переменную. . Получаем, что . Тогда - не удовлетворяет условию , .

Выполним обратную замену.

; ;

.

Тогда - не удовлетворяет условию ,

О т в е т: .

Пример 7. Решить уравнение

Решение. Найдем ОДЗ переменной х.

ОДЗ:

Следовательно, что

Легко видеть, что , т.к. .

Разделим обе части уравнения на . Получаем, что

Преобразуем . Введем новую переменную. Пусть , а . Тогда уравнение примет вид: ; ; : . Тогда - не удовлетворяет условию , . Выполним обратную замену.

О т в е т: .

Пример 8. Решить уравнение

Решение. Преобразуем исходное уравнение.

Возведем обе части полученного уравнения в квадрат.

Тогда

Итак, проверка показывает, что -1,2 - не является корнем исходного уравнения, а 3 - является.

Замечание. Данное уравнение можно решать и с помощью равносильных переходов, но тогда его решении будет намного сложнее, чем приведенное выше.

О т в е т: {3}.

Пример 9. Решить уравнение

Решение. Заметим, что все квадратные трехчлены положительны относительно . Перепишем уравнение в виде:

Обозначим для краткости подкоренные выражения через соответственно. Умножим и разделим левую и правую часть уравнения на сопряженные сомножители. Получаем, что

Вернемся к уравнению.

Второе уравнение совокупности решений не имеет, поскольку оба знаменателя положительны. Следовательно,

Замечание. Также решение данного уравнения можно найти, исследуя его на разных числовых промежутках.

Сначала выделим и соответственно в каждом из подкоренных выражений в правой части уравнения.

Следовательно, исходное уравнение имеет вид:

Обозначим для краткости подкоренные выражения через , , и соответственно. Т.к. выражение обращается в ноль при , то рассмотрим решение данного уравнения при , и .

Если , то > , > + > + .

Следовательно, при исходное уравнение не имеет корней.

Если , то < , < + < + .

Следовательно, при исходное уравнение не имеет корней.

Если , то = , = + = + .

Следовательно, -1 является единственным корнем исходного уравнения.

О т в е т:{-1}.

Замечание. Следовательно, при решении уравнений с радикалами надо уметь пользоваться любым из этих методов и выбирать в каждом случае оптимальный.

3. Не стандартные методы решения иррациональных уравнений

Существуют иррациональные уравнения, которые считаются для школьников обычных образовательных школ задачами повышенной трудности. Для решения таких уравнений лучше применять не традиционные методы, а приемы, которые не совсем привычны для учащихся. В этой главе приводятся решения уравнений основанных на графических соображений, свойствах функции (таких, как монотонность, ограниченность, четность), применении производной и т.д.

3.1 Применение основных свойств функции

3.1.1 Использование области определения уравнения

Иногда знание области определения уравнения позволяет доказать, что уравнение не имеет решений, а иногда позволяет найти решения уравнения непосредственной подстановкой чисел из нее.

Пример 1. Решить уравнение .

Решение. Найдем область определения уравнения.

ОДЗ: .

Следовательно, данная система решений не имеет.

Т.к. система решений не имеет, то и данное уравнение не имеет корней.

О т в е т: .

Пример 2. Решить уравнение

Решение. Найдем ОДЗ переменной х.

ОДЗ: .

Следовательно, или .

Таким образом, решения данного уравнения могут находиться среди найденных двух чисел.

Проверкой убеждаемся, что только 2 является корнем исходного уравнения.

О т в е т: {2}.

3.1.2 Использование области значений уравнений

Пример 1. Решить уравнение

Решение. Т.к. , следовательно, , но (правая часть уравнения отрицательна, а левая положительна), значит данное уравнение не имеет решений.

О т в е т:

Пример 2. Решить уравнение .

Решение. Т.к. , то

; ; ; ; ; ; .

Следовательно, левая часть уравнения принимает неотрицательное значение только при . А это значит, что его корнем может быть только значение 5, а может случиться, что уравнение вообще не будет иметь корней. Для решения этого вопроса выполним проверку.

Проверка показывает, что 5 является корнем исходного уравнения.

О т в е т: {5}.

3.1.3 Использование монотонности функции

Решение уравнений и неравенств с использованием свойств монотонности основывается на следующих утверждениях.

1. Пусть f(x) - непрерывная и строго монотонная функция на промежутке Q, тогда уравнение f(x)=c, где c - данная константа может иметь не более одного решения на промежутке Q.

2. Пусть f(x) и g(x) - непрерывные на промежутке Q функции, f(x) - строго возрастает, а g(x)- строго убывает на этом промежутке, тогда уравнение f(x)= g(x) может иметь не более одного решения на промежутке Q.

Отметим, что в каждом из случаев промежутки Q могут иметь один из видов:

Пример 1. Решим уравнение

Решение. Найдем ОДЗ переменной х.

ОДЗ: .

Следовательно, .

На ОДЗ функции и непрерывны и строго убывают, следовательно, непрерывна и убывает функция . Поэтому каждое свое значение функция h(x) принимает только в одной точке. Т.к. h(2)=2 , то 2 является единственным корнем исходного уравнения.

О т в е т: {2}.

3.1.4 Использование ограниченности функции

Если при решении уравнения удается показать, что для всех из некоторого множества М справедливы неравенства и , то на множестве М уравнение равносильно системе уравнений: .

Пример 1. Решить уравнение .

Решение. Функции, стоящие в разных частях уравнения, определены на . Для любого . Следовательно, данное уравнение равносильно системе уравнений

.

Решим второе уравнение системы:

; ;

Тогда

Проверка показывает, что 0 является корнем данного уравнения, а -1-не является.

О т в е т:{0}.

Пример 2. Решить уравнение

Решение. Оценим подкоренные выражения.

Следовательно, ,

Т.к. первое слагаемое левой части исходного уравнения ограничено снизу единицей, а второе слагаемое-3, то их сумма ограничена снизу 4. Тогда левая часть уравнения становится равной правой части уравнения при .

О т в е т:{2}.

3.2 Применение производной

В вышеприведенных уравнениях были рассмотрены применения некоторых свойств функции, входящих в уравнение. Например, свойства монотонности, ограниченности, существования наибольшего и наименьшего значений и т.д. Иногда вопрос о монотонности, об ограниченности и, в особенности, о нахождении наибольшего и наименьшего значений функции элементарными методами требует трудоемких и тонких исследований, однако он существенно упрощается при применении производной. (Например, не всегда можно догадаться, как и какое неравенство применить из «классических»).

Рассмотрим применение производной при решении уравнений.

3.2.1 Использование монотонности функции

В дальнейшем мы будем пользоваться следующими утверждениями:

1) если функция f(x) имеет положительную производную на промежутке М, то эта функция возрастает на этом промежутке;

2) если функция непрерывна на промежутке и имеет внутри промежутка положительную (отрицательную) производную, то эта функции возрастает ( убывает) на промежутке;

3) если функция имеет на интервале (а;b) тождественно равную нулю производную, то эта функция есть постоянная на этом интервале.

Пример 1. Решить уравнение

Решение. Рассмотрим функцию

.

На этом промежутке непрерывна, внутри его имеет производную:

Эта производная положительна внутри промежутка . Поэтому функция возрастает на промежутке М. Следовательно, она принимает каждое свое значение в одной точке. А это означает, что данное уравнение имеет не более одного корня. Легко видеть, что -1 является корнем данного уравнения и по сказанному выше других корней не имеет.

О т в е т:

3.2.2 Использование наибольшего и наименьшего значений функции

Справедливы следующие утверждения:

  1. наибольшее (наименьшее) значение непрерывной функции, принимаемое на интервале может достигаться в тех точках интервала , в которых ее производная равна нулю или не существует (каждая такая точка называется критической точкой);

  2. чтобы найти наибольшее и наименьшее значение непрерывной на отрезке функции, имеющей на интервале (а;b) конечное число критических точек, достаточно вычислить значения функции во всех критических точках, принадлежащих интервалу (а;b), а также в концах отрезка и из полученных чисел выбрать наибольшее и наименьшее;

  3. если в критической точке функция непрерывна, а ее производная, проходя через эту точку, меняет знак с «минуса» на «плюс», то точка - точка минимума, а если ее производная меняет знак с «плюса» на «минус», то - точка максимума.

Пример 1. Решить уравнение .

Решение. Найдем ОДЗ переменной x.

ОДЗ: .

Рассмотрим непрерывную функцию на отрезке [2;4], где D(f)=[2;4].

Функция f(x) на интервале (2;4) имеет производную: , обращаются в ноль только при х=3.

Т.к. функция f(x)непрерывна на отрезке [2;4], то ее наибольшее и наименьшее значения находятся среди чисел f(3);f(2);f(4). Т.к. f(3)=2;f(2)=f(4)= , , то наибольшее значение f(x) есть f(3)=2.

Следовательно, данное уравнение имеет единственный корень: 3.

О т в е т:{3}.

4. Смешанные иррациональные уравнения и методы их решения

4.1 Иррациональные уравнения, содержащие двойную иррациональность

Пример 1. Решить уравнение

Решение. Возведем обе части уравнения в куб.

Возведем обе части полученного уравнения в квадрат.

Введем новую переменную. Пусть , тогда . Получаем, что . Тогда .

Выполним обратную замену. Или .

Тогда или

Проверка показывает, что не является корнем данного уравнения, а 1- является.

О т в е т: {1}.

Пример 2. Решить уравнение

Решение.

Введем новую переменную. Пусть . Тогда

Тогда система примет следующий вид:

О т в е т:

Пример 3. Решить уравнение

Решение. Введем новую переменную. Пусть . Тогда . Получаем, что

.

Т.к. , то данное уравнение равносильно следующему:

Получаем, что . Учитывая, что , то решения: . Следовательно, .

Выполним обратную замену. . Тогда

О т в е т: [-4;0].

Пример 4. Решить уравнение

Решение. Преобразуем подкоренные выражения.

Вернемся к исходному уравнению.

Последнее уравнение решим методом интервалов.

  1. Пусть . Получаем, что

.

Т.к. , то на данном промежутке уравнение не имеет корней.

  1. Пусть . Получаем, что Равенство верно. Найдем все значения из данного промежутка. . Следовательно,

  2. Пусть . Получаем, что . Т.к. , то на данном промежутке уравнение не имеет корней.

Замечание. Данное уравнение можно решать, выполнив замену переменной . После решения исходного уравнения относительно переменной , выполнив обратную замену, найдем корень уравнения.

О т в е т: [0;3].

Замечание. Выражение вида обычно называют двойным радикалом или сложным радикалом.

Если подкоренное выражение представляет собой полный квадрат, то можно в двойном радикале освободиться от внешнего радикала, воспользовавшись равенством .

Преобразование двойных радикалов.

Упражнение 1. Освободиться от внешнего радикала в выражении .

Решение. Слагаемое можно рассматривать как удвоенное произведение чисел и или чисел и . Число 7 должно быть равно сумме квадратов этих чисел. Подбором находим, что это условие выполняется для чисел и , т.е. .

Получаем, что

О т в е т: .

4.2. Иррациональные показательные уравнения

Пример 1. Решить уравнение .

Решение. ; - решений нет.

О т в е т:

Пример 2. Решить уравнение

Решение.

- Решений нет, т.к.

О т в е т:

Пример 3. Решить уравнение

Решение.

;

О т в е т: .

Приме 4. Решить уравнение

Решение.

;

Введем новую переменную. Пусть . Получаем, что . Тогда

Выполним обратную замену. Или

;

- решений нет.

; .

О т в е т:{3}.

Пример 5. Решить уравнение

Решение. Множество М – общая часть (пересечение) областей существования функций - есть все

На множестве М функции и положительны. Поэтому, логарифмируя обе части уравнения, получим уравнение, равносильное исходному на М.

Решим уравнения совокупности.

. Введем новую переменную. Пусть . Получаем, что . Тогда . Выполним обратную замену. или . Тогда или .

Получаем, что исходное уравнение равносильно системе:

О т в е т: .

Замечание. В задачах повышенной сложности встречаются уравнения вида , где - некоторые положительные числа. Такие уравнения не являются иррациональными уравнениями, т.к. не содержат переменной под знаком радикала, но все, же разберем их решение в данном пункте.

Пример 6. Решить уравнение

Решение. Преобразуем выражение

Тогда исходное уравнение примет вид:

Замечание. Можно заметить, что , следовательно, и - взаимно обратные числа. Тогда . Введем новую переменную. Пусть , а Получаем, что исходное уравнение равносильно следующему . Тогда

Выполним обратную замену.

или

; ;

Тогда .

;

Тогда

О т в е т :{-2;2}.

4.3 Иррациональные логарифмические уравнения

Пример 1. Решить уравнения

Решение. ;

Учитывая, что , данное уравнение равносильно системе:

О т в е т:{32,75}.

Пример 2. Решить уравнения

Решение. . Преобразуем правую часть уравнения.

Вернемся к исходному уравнению.

;

Введем новую переменную. Пусть . Получаем, что

.

Решим уравнение системы.

; .

Тогда

Вернемся к системе: Следовательно,

Выполним обратную замену:

Проверка показывает, что 1 является корнем исходного уравнения.

О т в е т: {1}.

Пример 3. решить уравнение

Решение. Найдем ОДЗ переменной х.

ОДЗ:

.

На ОДЗ исходное уравнение равносильно уравнению

; ;

Введем новую переменную. Пусть или

;

;

О т в е т: {3;81}.

Заключение

Данная курсовая работа помогла мне научиться решать иррациональные уравнения следующих типов: стандартные, нестандартные, показательные, логарифмические, повышенного уровня. Применять основные свойства функции, область определения, область значения функции. Использовать наибольшее и наименьшее значения функции. Применение производной. Я считаю, что цели которые поставлены перед выполнением курсовой работы выполнены.

Литература

О.В. Харькова «Иррациональные уравнения».

А.Н. Колмогоров «Алгебра и начала анализа».

Е.Д. Куланин, В.П. Норин «3000 конкурсных задач по математике».

В.А. Гусев, А.Г. Мордкович «Справочные материалы по математике».

М.И. Сканави «Сборник задач по математике».

Характеристики

Тип файла
Документ
Размер
6,53 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее