85527 (612503)
Текст из файла
Министерство образования и науки Украины
Кафедра КИТ
“ВЕРОЯТНОСТНЫЕ ПРОЦЕССЫ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ”
2008
РЕФЕРАТ
Пояснительная записка к расчетно-графической работе: 29 стр., 9 рис., 1 прил., 5 источников.
Объект исследования – оптимальный предел прочности алюминиевых деформируемых сплавов при испытании на растяжение.
Метод исследования – применение математико-статистических методов в автоматизированных системах, реализация программ статистической обработки эксперимента на ЭВМ.
Многие детали и конструкции испытывают нагрузки на растяжение. При чем эти нагрузки часто являются основным фактором, влияющим на выход из строя деталей и конструкций. Поэтому очень важной и актуальной является задача нахождения оптимального состава материала, в течение длительного времени испытующего нагрузки на растяжение.
ДЕФОРМИРУЕМЫЙ АЛЮМИНИЕВЫЙ СПЛАВ, ЛИТИЙ, ТЕМПЕРАТУРА СТАРЕНИЯ, ВРЕМЯ СТАРЕНИЯ, МНОГОФАКТОРНЫЙ ЭКСПЕРИМЕНТ.
СОДЕРЖАНИЕ
Введение
1 Постановка задачи
2 Этапы планирования и статической обработки результатов эксперимента для построения модели 2-го порядка
2.1 Построение модели плана II порядк
2.2 Кодирование факторов
2.3 Составление план – матрицы
2.4 Проверка воспроизводимости опытов
2.5 Расчет коэффициентов регрессии
2.6 Определение значимости коэффициентов
2.7 Проверка адекватности модели
3 Выбор и описание метода условной оптимизации
3.1 Выбор метода условной оптимизации
3.2 Описание метода условной оптимизации (Фиако-МакКормика)
4 Описание программы
4.1 Общие сведения
4.2 Функциональное назначение
4.3 Описание логической структуры программы
4.4 Используемые технические средства
4.5 Вызов и загрузка
4.6 Входные данные
4.7 Выходные данные
5 Результаты обработки данных эксперимента
6 Графики зависимости отклика
7 Кривые равного выхода
Заключение
Список использованных источников
Приложение
Введение
Развитие современной техники связано с созданием новых и постоянным совершенствованием существующих технологических процессов. Основой их разработки и оптимизации является эксперимент. Заметное повышение эффективности экспериментальных исследований и инженерных разработок достигается использованием математических методов планирования экспериментов. Использование математико-статистических методов при постановке задач. В процессе экспериментирования и при обработке полученных данных существенно сокращает сроки решения, снижает затраты на исследования и повышает качество полученных результатов.
Встречающиеся на практике реальные задачи весьма разнообразны. Достаточно грубо их можно разделить на три основных задачи:
-
Выявление количественных зависимостей между параметрами процесса – задачи описания;
-
Определение оптимальных условий протекания процесса – экстремальные задачи;
-
Выбор оптимального состава многокомпонентных смесей.
Часто, приступая к изучению какого-либо процесса экспериментатор не имеет исчерпывающих сведений о механизме процесса. Можно только указать параметры определяющие условия протекания процесса, и, возможно требования к его результатам. Поставленная проблема является задачей кибернетики. Действительно, если считать кибернетику «наукой, изучающей системы любой природы, способные воспринимать, хранить и перерабатывать информацию для целей оптимального управления» [1], то такую систему можно представить в виде черного ящика.
Черный ящик – объект исследования, имеющий (k+p) входов и m выходов.
X – управляемые параметры, Z – неуправляемые параметры.
Зависимость между выходными параметрами (откликом) и входными параметрами (факторами) называется функцией отклика.
Математическая запись функции отклика представлена в виде формулы (1):
(1)
Этому уравнению в многомерном пространстве соответствует гипперповерхность, которая называется поверхностью отклика, а само пространство – факторным пространством.
Эксперимент можно проводить по разному. В случае, когда исследователь наблюдает за каким-то неуправляемым процессом, не вмешиваясь в него, или выбирает экспериментальные точки интуитивно, на основании каких-то привходящих обстоятельств, эксперимент считают пассивным. В настоящее время пассивный эксперимент считается неэффективным.
Гораздо более продуктивно проводится эксперимент, когда исследователь применяет статистические методы на всех этапах исследования, и, прежде всего, перед постановкой опытов, разрабатывая схему эксперимента, а также в процессе экспериментирования, при обработке результатов и после эксперимента, принимая решение о дальнейших действиях. Такой эксперимент считают активным, и он предполагает планирование эксперимента.
Под планированием эксперимента понимают процедуру выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. Основные преимущества активного эксперимента связаны с тем, что он позволяет:
-
Минимизировать общее число опытов;
-
Выбирать четкие логически обоснованные процедуры, последовательно выполняемые экспериментатором при проведении исследования;
-
Использовать математический аппарат, формализующий многие действия экспериментатора;
-
Одновременно варьировать всеми переменными и оптимально использовать факторное пространство;
-
Организовать эксперимент таким образом, чтобы выполнялись многие исходные предпосылки регрессионного анализа;
-
Получать математические модели, имеющие лучшие в некотором смысле свойства по сравнению с моделями, построенными из пассивного эксперимента;
-
Рандомизировать условия опытов, то есть многочисленные мешающие факторы превратить в случайные величины;
-
Оценивать элемент неопределенности, связанный с экспериментом, что дает возможность сопоставлять результаты, полученные разными исследователями [1].
Целью данной работы является освоение анализа плановых экспериментов и анализ данных, полученных при выполнении этих экспериментов.
1. Постановка задачи
Изучали механические свойства одного из алюминиевых деформируемых сплавов в зависимости от содержания в нем лития Х1 (основной уровень 1%, интервал варьирования 0,5%), температуры старения Х2 (основной уровень 175 гр.С, интервал варьирования 25 гр.С) и времени старения Х3 (основной уровень 4 ч., интервал варьирования 2 ч.). В качестве отклика выбран предел прочности сплавов, определяющийся при испытании на растяжение (Y, кгс/кв.мм).
Задание на расчетно-графическую работу:
-
Найти уравнение регрессии 2-го порядка и выполнить статистический анализ модели.
-
Исследовать модель 2-го порядка на выпуклость и вогнутость методами дифференциального исчисления.
-
Определить тип поверхности отклика.
-
Построить графики зависимости отклика от каждого из факторов Y=f(Xi) при фиксированных значениях остальных факторов (каждый рисунок должен содержать 3-4 кривые).
-
Применяя один из методов оптимизации, найти в исследованной области оптимальные сочетания факторов, обеспечивающие максимальное и минимальное значения отклика.
-
Построить двумерные сечения поверхности отклика, соответствующие пересечению поверхности с плоскостями Xi=Ximax. Для этого в уравнение регрессии необходимо подставить значение этого фактора, и по полученным двухфакторным уравнениям рассчитать, а потом построить изолинии поверхности отклика (кривые равного выхода).
-
Определить типы кривых равного выхода.
-
Используя двумерные сечения поверхности, выполнить анализ влияния факторов в изученных интервалах их изменения на функцию отклика.
2. Этапы планирования и статической обработки результатов эксперимента для построения модели 2-го порядка
2.1 Построение модели плана II порядка
Для построения плана II порядка можно использовать следующую модель:
(2)
Для этого необходимо провести эксперимент так, чтобы каждый фактор варьировался на трех уровнях. Простейшим решением этой задачи является план типа 3k. Реализация этого плана для k>3 требует большого числа опытов.
Для построения модели второго порядка обычно используют ортогональный план первого порядка в качестве ядра, на котором достраивается план второго порядка, поэтому такие планы называются композиционными и соответствуют шаговой идее построения планов.
Для удобства работы с приведенной моделью II порядка, с помощью обозначений (3) преобразуем ее к виду (2’):
(3)
(2’)
Задача заключается в том, чтобы по результатам наблюдений определить значения коэффициентов bi, дисперсии и доверительные границы для них, а также определить их значимость.
Согласно МНК, для нахождения коэффициентов bi, необходимо минимизировать функцию:
(4)
где N – количество опытов;
xui –значение i-й переменной в u-м опыте;
yu – значение экспериментальных y в u-м опыте;
Из условия минимизации функции ss, можно получить систему нормальных уравнений МНК:
(5)
Представив все результаты в матричной форме, получим:
,
,
, (6)
где X – матрица условий эксперимента; Y – матрица результатов опытов; B – матрица коэффициентов.
Умножив транспонированную матрицу X на матрицу X, получим матрицу системы нормальных уравнений, которая называется информационной матрицей Фишера (матрицей моментов):
(7)
Умножив транспонированную матрицу X на матрицу Y, получим:
(8)
Используя данные обозначения, систему нормальных уравнений можно записать в матричной форме:
(9)
Обозначая обратную матрицу моментов как:
(10)
получим выражение для матрицы коэффициентов:
(11)
Все статистические свойства коэффициентов линии регрессии определяется матрицей дисперсий ковариаций.
(12)
где cov(bi, bj) – ковариации коэффициентов bi, и bj;
S2(bi) – дисперсия коэффициента bi;
S2(y) – дисперсия опыта.
Дисперсию опыта можно определить по формулам:
(13)
(14)
где m – количество параллельных опытов.
Если параллельные опыты не проводятся, то для оценки дисперсии опыта ставятся эксперименты в центре плана. Тогда дисперсия определяется по формуле:
(15)
где - количество опытов в центре плана.
Так как ядро плана ортогонально, то для сохранения ортогональности композиционного плана необходимо при построении матрицы планирования обеспечить условия:
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.