85527 (612503), страница 2
Текст из файла (страница 2)
Величина зависит от фактора и от плеча d:
;
Для k=3 ядро =15, =11/15=0.7303, d=1.2154
2.2 Кодирование факторов
Кодирование факторов используется для перевода натуральных факторов в безразмерные величины, чтобы построить стандартную план – матрицу эксперимента.
Для перевода заполняется таблица кодирования факторов на двух уровнях. В качестве 0-го уровня обычно выбирается центр интервала, в котором предполагается вести эксперимент.
Связь между кодовым и натуральным значениями фактора:
(16)
где Xi – натуральное значение фактора;
Xi0 –значение этого фактора на нулевом уровне;
I – интервал варьирования факторов.
Составим таблицу кодирования факторов, используя исходные данные.
Таблица 1 - Таблица кодирования факторов
2.3 Составление план – матрицы
В план – матрице должны быть указаны все возможные комбинации уровней факторов.
Таблица 2 – Расширенная план – матрица ортогонального плана
2.4 Проверка воспроизводимости опытов
При одинаковом числе параллельных этапов воспроизводимость опытов определяется по критерию Кохрена.
Для этого сначала считаются дисперсии, характеризующие рассевание результатов на каждом u-м опыте.
Проверка воспроизводимости опытов показана на рисунке 2.
Рисунок 2- Воспроизводимость опытов
2.5 Расчет коэффициентов регрессии
Поскольку план ортогонален, то коэффициенты регрессии будут определяться независимо друг от друга по формулам:
Значения при ядре плана
:
Матрица дисперсий (ковариаций) коэффициентов регрессии рассчитывается по формуле (10).
2.6 Определение значимости коэффициентов
Значимость коэффициентов регрессии проверяют по критерию Стьюдента:
(17)
Дисперсия коэффициентов определяется по формуле
2.7 Проверка адекватности модели
Адекватность модели проверяется с помощью критерия Фишера:
(17)
, (18)
где Sад2 – дисперсия адекватности, рассчитываемая по формуле (18);
Sy2 – дисперсия опыта;
=0.05;
fад=N-l, число свободы дисперсии адекватности;
fy=N(m-1), число свободы дисперсии опыта;
l – количество значимых коэффициентов.
Если неравенство (17) выполняется, значит модель адекватна.
3. Выбор и описание метода условной оптимизации
3.1 Выбор метода условной оптимизации
При решении поставленной задачи оптимизации был использован метод Фиако-МакКормика, который относится к непрямым методам решения задач нелинейного программирования. Непрямые методы преобразуют задачи с ограничениями в последовательность задач безусловной оптимизации путем введения в целевую функцию штрафных функций.
3.2 Описание метода условной оптимизации (Фиако-МакКормика)
Алгоритм метода Фиако-Маккормика
-
Задание
,
,
.
-
Нахождение методом прямого поиска минимума вспомогательной функции
, т.е.
.
-
Проверка условий окончания поиска
. Если условие выполняется по переход на этап 6, иначе переход на этап 4.
-
Уменьшение значения
,
,
.
-
Увеличение
. Переход на этап 2.
-
Оптимальное решение
,
.
4. Описание программы
4.1 Общие сведения
Обозначение программы - vpRgr.exe.
Наименование программы - “Расчетно – графическая работа № 1 по дисциплине “ВПиМСвАС”.
Программное обеспечение, необходимое для функционирования программы – Windows 95/98/NT/2000/ME.
Для написания программы была использована интегрированная среда разработки приложений (IDE-Integrated Development Environment) – Delphi 6.0.
4.2 Функциональное назначение
-
Назначение программы: определение оптимального состава алюминиевых деформируемых сплавов из условия получения максимального предела прочности при испытаниях на растяжения
-
Классы решаемых задач: анализ и статистическая обработка полнофакторного эксперимента с ортогональными планами второго порядка, в которую входят нахождение коэффициентов регрессии, оценка из значимости, проверка адекватности и воспроизводимости модели; поиск сочетаний факторов в кодовых и натуральных переменных; построения графиков отклика от изменения каждого параметра; построения кривых равного выхода при фиксировании одного из параметров.
-
Сведения о функциональных ограничениях на ее применение: данная программа корректно функционирует при количестве параметров равном 3. При небольшой модификации программы (замены названий факторов на новые) можно решать общую задачу анализа и статистической обработки полнофакторного эксперимента с ортогональными планами второго порядка.
4.3 Описание логической структуры программы
При программировании с использованием средств визуального программирования (Delphi, Visual Basic и др.), приложение становится событийно – управляемым, поэтому невозможно построить алгоритм программы, как это имело место при традиционном программировании на Pascal, C++. В связи с этим наиболее полное представление о программе дает ее укрупненная структурная схема с описанием функций составных частей и связи между ними.
Для того, чтобы разделить фазы “конструирования пользовательского интерфейса” и “непосредственного программирования математической модели”, была использована блочно – модульная структура. При этом каждый структурный элемент выносился в отдельный модуль, поддерживающий интерфейс с пользователем и между собой.
Рисунок 1.-логическая связь процедур модуля
Описание структурных элементов программы
type mas=array[1..3] of real;
var x:array[0..9,1..15] of real; //переменные
x2:array[1..3,1..15] of real;//квадраты переменных
x0,ix, //нулевые уровни и интервалы варьирования
xc, //значения координат центра
la, //канонические козффициенты
m,l,n,ml,nl, //направляющие косинусы углов поворота осей и их частные
xp1,xp2,xp3,xh,
xlocmax,xlocmin:mas; //координаты локальных максимума и минимума
y,ys:array[1..2,1..20] of real; //значения функции отклика
x12,x23,x13, //попарные произведения переменных
yc,ycs, //усредненная функция отклика
s2u:array[1..15] of real; //дисперсии эксперементив
b, //коэффициенты модели
s2b, //дисперсии коэффициентов
db:array[0..9] of real; //пределы значимости коэффициентов
kk: d,xc2,
S2UMax, //максимальное значение дисперсии эксперемента
s2y, //дисперсия опыта
ycen, //функция отклика в центре
ylocmax,ylocmin:real;
4.4 Используемые технические средства
Для оптимальной работы программы необходима следующая конфигурация компьютера:
-
процессор Intel Pentium III|| 500;
-
ОЗУ 64 Мб;
-
SVGA монитор (разрешение 800х600);
-
свободное место на жестком диске не менее 2 Mb;
4.5 Вызов и загрузка
Для инсталляции программы необходимо выполнить следующие шаги:
-
убедиться в том, что компьютер, на который устанавливается система, отвечает всем требованиям, изложенным в разделе «Минимальные системные требования»;
-
убедиться в исправности накопителей на гибких магнитных носителях;
-
перекопировать программу на жесткий диск компьютера;
-
запустить файл Rgr.exe.
4.6 Входные данные
Входными данными к программе являются:
-
таблица кодирования (таблица 1);
-
результаты экспериментов.
Входные данные заданы в программе.
4.7 Выходные данные
Выходными данными являются:
-
дисперсии опытов;
-
коэффициенты линии регресии;
-
расчетные значения выходов;
-
заключения о воспроизводимости опытов, значимости коэффициентов модели, адекватности модели;
-
графики отклика при двух постоянных значениях факторов;
-
кривые равного выхода при одном постоянном факторе;
-
наилучшие и наихудшие сочетания факторов.
5. Результаты обработки данных эксперимента
В результате работы программы были получены следующие результаты:
Расширенная план-матрица эксперимента
Нахождение коэффициентов, проверка их значимости и анализ полученной модели показано на рисунке 3.
Рисунок 3 – Результат работа программы
6. графики зависимости отклика
Графики зависимости отклика от каждого из параметров представлены на рисунка 4-6.
Рисунок 4 – зависимость отклика от изменения параметра x1. Зависимость отклика от X1
y= 30,60 + 0,00*x1 + 2,97*x1^2 x2=0 x3=0
y= 25,60 + 3,87*x1 + 2,97*x1^2 x2=1 x3=0
y= 22,73 + 1,02*x1 + 2,97*x1^2 x2=1 x3=1
Рисунок 5 - зависимость отклика от изменения параметра x2. Зависимость отклика от X2
y= 30,60 + -1,94*x2 + -3,05*x2^2 x1=0 x3=0
y= 33,57 + 1,92*x2 + -3,05*x2^2 x1=1 x3=0
y= 34,35 + -4,57*x2 + -3,05*x2^2 x1=1 x3=1
Рисунок 6 - зависимость отклика от изменения параметра x3. Зависимость отклика от X3
y= 30,60 + 3,63*x3 + 0,00*x3^2 x1=0 x2=0
y= 33,57 + 0,78*x3 + 0,00*x3^2 x1=1 x2=0
y= 32,44 + -5,71*x3 + 0,00*x3^2 x1=1 x2=1
7. кривые равного выхода
Графики зависимости отклика от каждого из параметров представлены на рисунках 7-9
Рисунок 7 – Линии уровня отклика при фиксированном x3