85497 (612495)
Текст из файла
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
"Гомельский государственный университет
имени Франциска Скорины"
Математический факультет
Кафедра алгебры и геометрии
Курсовая работа
АЛГЕБРАИЧЕСКИЕ ГРУППЫ МАТРИЦ
Исполнитель:
студентка группы H.01.01.01 М-42
Мариненко В.В.
Научный руководитель:
доктор физико-математических наук,
профессор Скиба С.В.
Гомель 2003
Содержание
Введение
1. Алгебраические группы матриц
1.1 Примеры алгебраических групп матриц
1.2 О полугруппах
1.3 Компоненты алгебраической группы
1.4 О
-группах
2 Ранг матрицы
2.1 Возвращение к уравнениям
2.2 Ранг матрицы
2.3 Критерий совместности
3 Линейные отображения. Действия с матрицами
3.1 Матрицы и отображения
3.2 Произведение матриц
3.3 Квадратные матрицы
Заключение
Список использованных источников
Введение
Множество
матриц
-ой степени над
будем рассматривать как аффинное пространство
с имеющейся на ней полиномиальной топологией. Алгебраические группы матриц определяются как невырожденные части алгебраических множеств из
, являющиеся группами относительно обычного матричного умножения. Простейший пример такой группы - общая линейная группа
. В настоящем параграфе мы начнем систематическое изучение алгебраических матричных групп.
Все топологические понятия относятся к полиномиальной топологии; черта обозначает замыкание в
, диез - замыкание в
, бемоль - взятие невырожденной части, т. е.
- совокупность всех невырожденных матриц из
. Иногда, допуская вольность, мы употребляем для групп те же понятия, что и для подлежащих алгебраических множеств, - например, говорим об общих точках групп; это не должно вызывать недоразумений.
1. Алгебраические группы матриц
1.1 Примеры алгебраических групп матриц
Классические матричные группы - общая, специальная, симплектическая и ортогональная:
где
- единичная матрица и штрих обозначает транспонирование.
Диагональная группа
, группы клеточно-диагональных матриц данного вида. Треугольная группа
(для определенности --- с нижним нулевым углом), унитреугольная группа
(треугольные матрицы с единичной диагональю), группы клеточно-треугольных матриц данного вида.
Централизатор произвольного множества из
в алгебраической группе
, нормализатор замкнутого множества из
в
.
Пересечение всех алгебраических групп, содержащих данное множество матриц
из
--- алгебраическая группа. Она обозначается
и называется алгебраической группой, порожденной множеством
.
Каждую алгебраическую линейную группу из
можно изоморфно --- в смысле умножения и полиномиальной топологии --- отождествить с замкнутой подгруппой из
в силу формулы
Такое отождествление позволяет при желании ограничиться рассмотрением только таких групп матриц, которые сами являются алгебраическими множествами (а не их невырожденными частями). Это дает другое оправдание тем вольностям в терминологии, которые упоминались в начале параграфа.
Множество всех матриц из
, оставляющих инвариантной заданную невырожденную билинейную форму
на
.
Пусть
--- алгебра над
конечной размерности
(безразлично, ассоциативная или нет),
--- группа всех ее автоморфизмов. Фиксируя в
какую-нибудь базу
и сопоставляя автоморфизмам алгебры
их матрицы в этой базе, мы получим на
строение алгебраической группы. Действительно, пусть
т. е.
--- структурные константы алгебры
. Пусть далее
где
. Тогда
задается в матричных координатах
очевидными полиномиальными уравнениями, вытекающими из соотношений
Указать в приведенных выше примерах определяющие уравнения, найти общую точку, если она есть.
В дальнейшем нам встретится еще много примеров и конструкций алгебраических матричных групп.
1.1.1 Если матричная группа
содержит алгебраическую подгруппу
конечного индекса, то
сама алгебраическая.
Доказательство. Пусть
- аннулятор группы
в
,
- его корень в
. Надо показать, что
. Пусть, напротив,
. Пусть
- смежные классы
по
. Для каждого
выберем многочлен
и положим
Очевидно,
,
. Получили противоречие.
Пусть
--- алгебраическая группа,
,
--- подмножество и замкнутое подмножество из
. Тогда множества
где
, замкнуты. Если
тоже замкнуто и
--- общее поле квазиопределения для
,
,
, то
,
,
квазиопределены над
. В частности, если существует хотя бы одно
с условием
(соответственно,
,
), то можно считать, что
(см. 7.1.5).
Если на множестве
выполняется теоретико-групповое тождество
, то оно выполняется и на его замыкании
. В частности, коммутативность, разрешимость, нильпотентность матричной группы сохраняются на ее замыкании в полиномиальной топологии.
1.2 О полугруппах
Определим действие элементов из
на рациональные функции из
,
, полагая
Для каждого
отображение
(сдвиг аргумента) есть автоморфизм поля
. Отображение
есть изоморфизм полной линейной группы
в группу автоморфизмов расширения
.
Имеет место следующее предложение.
1.2.1 Все замкнутые (в полиномиальной топологии) полугруппы из
являются группами. Более общно: замыкание
произвольной полугруппы
--- группа. Более точно: если
--- аннулятор
в
, то
совпадает с
Здесь вместо
можно написать
.
Доказательство. Во-первых,
и, значит,
. Действительно, если
,
и
, то
, т. е.
. Подпространство
многочленов из
степени
отображается оператором
на себя, так как оно конечномерно, а опрератор обратим. Но тогда и всё
отображается на себя, как объединение всех
.
Во-вторых,
, т. е.
для каждого
. Действительно, пусть
. По уже доказанному,
. Найдём
с условием
. Тогда
.
В-третьих,
, т. е.
для всех
,
. Действительно,
. Предложение доказано.
Таким образом, теория алгебраических полугрупп из
исчерпывается теорией алгебраических групп.
Отметим ещё одно полезное предложение.
1.2.2 Пусть алгебраическая группа
неприводима, т. е.
--- многообразие,
--- густое подмножество, плотное в
. Тогда каждый элемент
является произведением двух элементов из
; в частности, если
--- подгруппа, то она совпадает с
.
Доказательство. Множества
и
тоже густые и плотные, поэтому пересечение
непусто (см. п. 8.2).
Если
--- полугруппа из
, то
.
1.3 Компоненты алгебраической группы
Пусть
--- алгебраическая группа матриц. Невырожденные части компонент её подлежащего многообразия
называеются компонентами группы
. наличие в
групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия.
1.3.1 Теорема. Пусть
--- алгебраическая группа матриц. Её компонента
, содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы
по
(в частности, они являются связными компонентами группы
в полиномиальной топологии).
--- единственная связная замкнутая подгруппа конечного индекса в
. Аннулятор
компоненты
связан с аннулятором
всей группы
следующим образом:
для некоторого
, зависящего от
, где
--- аннулятор единицы в
,
--- некоторый многочлен из
.
Доказательство. а) Пусть
--- общее поле определения всех компонент
группы
. Пусть
,
содержат единицу
,
,
--- их независимые общие точки над
и
,
. Имеем специализации
над
, откуда
,
,
. Этим доказана единственность компоненты
.
б) Очевидно, что отображения
являются гомеоморфизмами пространства
. Так как
инвариантна относительно них, то
--- нормальная подгруппа группы
.
в) Пусть
. Тогда
при фиксированном
--- снова все компоненты группы
. В частности,
,
. Этим доказано, что
--- смежные классы
по
и, значит, связные компоненты группы
.
г) Если
--- связная замкнутая подгруппа группы
, то, предыдущему,
. Если, кроме того,
конечного индекса, то она той же размерности, что и
, потому совпадает с
.
д) Для каждого
возьмем многочлен
Пусть
--- точка из
, в которой
. Рассмотрим многочлен
Он искомый. В самом деле, очевидно,
. Оба включения справа налево очевидны (использовать простоту идеала
). Остается доказать включение
Пусть
,
. Имеем:
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















