85454 (612490), страница 2
Текст из файла (страница 2)
Зона проводимости
Зона проводимости
донорная(n)
примесь Запрещённая зона
Запрещённая зона {
акцент.(р)
Валентная зона примесь Валентная зона
ПП Диэлектрик
Таким образом, ширина запрещённой зоны определяет энергию, необходимую для перехода е из валентной зоны в зону проводимости, и является важнейшим параметром ПП. Если е возвращается в валентную зону, то происходит рекомбинация е и дырки.
В электронике оценка энергии е производится величиной
W = g, где
потенциалов, прошедших элементарным зарядом (иногда, энергетическим потенциалом).
В зависимости от количества атомов примеси и от энергии, получаемой е внешних оболочек (в частности от ТПП) количество е зоны проводимости будет различно. Но ведь количество носителей тока при наличии поля будет определять, в частности, величину тока в ПП. Поэтому количество таких е («дырок») является важным параметром. Однако, само количество е («дырок») ещё ни о чём не говорит. Важна их концентрация (т.е. количество на единицу объёма).
Концентрация носителей (обозначается n – для е и p – для «дырок») – очень важный параметр ПП. Концентрация сильно зависит от Т(например, увеличение Т на 5% увеличивает концентрацию на ~ 3 раза) и от ширины запрещённой зоны (обратно пропорционально). В ПП концентрация носителей неравномерна ( т.е. существует градиент концентрации). Такое неравномерное распределение носителей называется Больумановским равновесием и объясняется возникновением внутреннего электрического поля в ПП, препятствующего выравниванию концентрации.
Движение носителей в электрическом поле напряжённостью Е называется дрейфом и величина дрейфового тока:
i = E, где
- удельная проводимость, важный параметр ПП (иногда используют удельное электросопротивление 1/).
Т.к. в ПП есть 2 типа носителей, то
qnn + qpp,где
q – единичный заряд
n и p – концентрация
n и p – подвижность носителей, важный параметр ПП.
В вакууме носитель под воздействием поля Е будет двигаться равноускоренно. Другое дело – твёрдое тело. Ускоряясь, носители постоянно «сталкиваются» с атомами (испытывают рассеяние). На длине свободного пробега носители двигаются равноускоренно, затем, столкнувшись, теряют скорость и снова ускоряются. Поэтому средняя дрейфовая скорость _
= Е, где
- коэффициент пропорциональности, называемый подвижностью носителя, и зависящий от его эффективной массы (для Si e ~ 3p).
Быстродействие полупроводниковых приборов прямо пропорционально подвижности носителей ПП, на основе которого выполнен прибор.
Подвижность – величина не постоянная и зависит от Т, причём неоднозначно, например
Так, для Si могут меняться в диапазоне рабочих температур
от -50С до +125С в 4-5 раз.
Т
ЭФФЕКТ ПОЛЯ
Эффект поля – это изменение концентрации носителей (а, следовательно, проводимости) в приповерхностном слое ПП под воздействием внешнего электрического поля.
Создадим конструкцию МДП:
+
d ++
+++
Т.к. есть диэлектрик, то ток не течёт. Из-за свойств
Me Eд диэл. -- U + проводника все свободные е сосредоточены на
поверхности проводника. На обкладке, представляющей
собой ПП будет наведён такой же заряд, что и в провод
нике, однако, он будет распределён неравномерно в глубь
кристалла.
Поле в диэлектрике, ввиду отсутствия объёмных
X зарядов, постоянно. В ПП р-типа, при подаче +U
на ПП, на границе ПП – диэлектрик концентрация
U изменений р – типа увеличивается, следовательно,
увеличивается и проводимость. Увеличение концентрации оситных носителей в слое называется обогащением (уменьшение – объединением при неизменной полярности U ). По мере уменьшения d эффект поля может исчезнуть за счёт пробоя диэлектрика. Даже если диэлектрик – вакуум, возможен туннельный эффект.
Глубина проникновения поля в ПП (фактически, толщина обогащённого слоя) называется длиной Дебая (дебаевская длина).
ЭЛЕКТРОННО-ДЫРОЧНЫЕ ПЕРЕХОДЫ
В подавляющем большинстве случаев в микроэлектронике находят применение так называемые p-n переходы, возникающие на границе металл – полупроводник и полупроводник – полупроводник. Комбинация двух ПП различной проводимости обладают вентильными свойствами, т.е. они лучше пропускают поток в одном (прямом) направлении. Практически все реальные p-n переходы - плавные, т.е. в районе металли
p-n переход ческой границы концентрация одних примесей
p n
постоянно растёт, а других – убывает. Сама металли
ческая граница характеризуется равенством p=n.
Как правило, концентрация p и n вне границы
металлическая граница существенно различаются, и такие p-n переходы
называются асимметричными (несимметричными).
Т.к концентрация n > p, то число электронов, диффундирующих в область р больше, чем число диффундирующих «дырок» и в слое р вблизи границы оказываются избыточные е, ре-комбинирующие с «дырками» до тех пор, пока не будет равновесия. Следовательно, концентрация «дырок» уменьшится. Аналогично можно рассуждать и по отношению к «дыркам».
Например:
асимметрия
n n,p
p
идеальный
п
ереход
Х
В идеале считают, что в p-n переходе Ширина перехода (d)
вообще отсутствуют носители и сам p-n переход является наиболее высокоомной частью структуры. Т.к. концентрация p и n различна, то между p и n областями, разделёнными высокоомным переходом, возникает потенциальный барьер. Если к переходу приложить напряжение + и к p-области (такая полярность называется прямой), то высота потенциального барьера уменьшится и
уменьшится его ширина. При обратной номерности - высота барьера и его
n p
ширина увеличатся. При прямых напряжениях в каждой из областей появляются избыточные носители и тогда говорят об инжекции носителей, если напряжение обратное, то количество носителей уменьшается, и говорят об
- +
(+) (-)
экстракции носителей.
Причём, если переход симметричный, то инжекция ( экстракция) е и «дырок» - одинаковая. Если переход асимметричный, то считают, что инжекция имеет односторонний характер и главную роль играют носители, инжектируемые из низкоомного (легированного) слоя в высокоомный. Низкоомный (более легированный) слой эмиттером, а высокоомный – базой. Таким образом, если к p-n переходу приложить прямое напряжение, то это приводит к изменению концентрации инжектированных носителей в области базы, а следовательно, изменяется и величина накопленного заряда, обусловленного этими зарядами. Процесс накопления избыточного заряда эквивалентен процессу заряда ёмкости. Поэтому говорят, что p-n переход обладает диффузионной ёмкостью.
Помимо диффузионной p-n переход обладает и барьерной (зарядной) ёмкостью (Сб) (если к p-n переходу приложить обратное напряжение, то на металлической границе носители отсутствуют и мы имеем ярко выраженную ёмкость). Сд и Сб – нелинейные ёмкости. Сд в основном проявляется при прямом включении диода, а Сб – при обратном. Первая зависит от тока Iпр, вторая – от Uобр. Строго говоря, такое разделение чисто условное, но оно удобно при анализе переходных процессов.
С
д и Сб существенно влияют на частотные свойства p-n перехода. Аналитически можно показать, что ВАХ такого p-n перехода описывается экспоненциальной зависимостью (Степаненко стр 82) вида: I/I0
I = I0(e(U/т) – 1), где
т – температурный потенциал ~ 25 милливольт
I
0 – тепловой ток, сильно зависящий от Т p-n перехода.
Можно доказать, что:
2 4 U/т
I0(Т) = I0(Т0)2Т/Т*, где
Т0 – средняя температура некоторого температурного диапазона, например - комнатная
Т – температура - градиент
Т* - так называемая температура удвоения.
В частности для кремния:
I0(Т) I0(20С)2Т-20С /10С)
Т.е. считают, что I0 изменяется в 2 раза при изменении Т перехода на 10С (по другим источникам Т* = 5С).
Прямая ветвь ВАХ довольно крутая и можно считать, что падение U на таком переходе = const практически во всём диапазоне изменения рабочих токов, и при расчётах, обычно, полагают, что
Uдиода пр = 0,7В для нормального режима и















