85305 (612484), страница 5
Текст из файла (страница 5)
Решение. Если окружность
обладает заданным свойством, то
Исключая
получаем уравнение относительно
:
.
Им определяется прямая с нормальным вектором
, который равен вектору
, где
- центр данной окружности. Следовательно, эта прямая перпендикулярна прямой AM (рис.6).
Заключение
Многие задачи элементарной геометрии можно изящно и просто решать при помощи комплексных чисел. Однако, значение комплексных чисел заключается не только в изяществе и краткости решения задач посредством этих чисел, хотя и это весьма существенно. Не менее важно и то, что в результате применения комплексных чисел при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений.
Конечно, данная работа не может вместить в себя все теоремы и задачи, к тому же многие из них еще не сформулированы. Здесь рассмотрены лишь некоторые темы, по каждой из которых были представлены задачи и их решения.
Хочется отметить и то, что излагаемая тема в этой работе еще мало изучена вообще, просто ею не занимаются, поэтому она таит в себе много скрытого и неизвестного, что дает прекрасную возможность для дальнейшей работы над ней.
Здесь мы остановились на вопросе применения комплексных чисел к решению планиметрических задач, а что, если комплексные числа применять к решению стереометрических задач?! Опять находить красивые закономерности, какие-то факты, уточнения, делать обобщения, открывать все новое и новое. Но это вопросы уже следующих работ.
Подводя итоги, можно сделать вывод: метод комплексных чисел в применении к решению задач по элементарной геометрии можно давать не только студентам высших учебных заведений, но и старшим школьникам на факультативных занятиях. Так как этот метод прост в применении, использует аппарат комплексных чисел, что, безусловно, должно заинтересовать увлекающихся математикой учеников. Дает возможность посмотреть на задачи по геометрии с другой стороны, приучить к тому, что все наглядные задачи (правильность которых видна из чертежа) можно решать аналитическим способом, вообще не прибегая к чертежу.
Список использованной литературы
-
З. А. Скопец “Геометрические миниатюры”.- М.: Просвещение, 1990
-
Л. И. Волковский “Сборник задач по теории функций комплексных переменных”.- М.: Просвещение, 1985
-
И. И. Привалов “Введение в теорию функции комплексного переменного”.- М.: Просвещение, 1988















