85000 (612455), страница 2

Файл №612455 85000 (Линейные диофантовы уравнения) 2 страница85000 (612455) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

.

3.2. ЛДУ с двумя неизвестными.

Рассмотрим теперь линейное уравнение с двумя неизвестными

,

.

Покажем несколько алгоритмов для нахождения решения.

Способ 1.

Пусть

Рассмотрим два случая:

а). не делится на

. В этом случае решений нет по теореме 2.

б). делится на

, поделим на

.

;

.

Таким образом получили новое ЛДУ, с тем же множеством решений, но уже со взаимно-простыми коэффициентами. Поэтому далее мы будем рассматривать именно такие уравнения.

Рассмотрим ,

.

, перейдем к сравнению,

.

Т.к. , то сравнение имеет единственное решение

.

; подставим в уравнение.

;

;

, причем

.

Обозначим .

Тогда общее решение можно найти по формулам: , где

.

Пример. ,

.

Найдем решение сравнения ;

;

, т.е.

.

;

Получили общее решение: , где

.

Способ 2.

Рассмотрим еще один способ нахождения решения ЛДУ с двумя неизвестными, а для этого рассмотрим уравнение вида . Уравнения такого вида называются линейными однородными диофантовыми уравнениями (ЛОДУ). Выражая неизвестную

, через неизвестную

приходим к

. Так как x должен быть целым числом, то

, где

- произвольное целое число. Значит

. Решениями ЛОДУ

являются n-ки вида

, где

. Множество всех таких n-ок называется общим решением ЛОДУ, любая же конкретная пара из этого множества называется частным решением.

Рассмотрим теперь уравнение ,

. Пусть n-ка

его частное решение, а множество n-ок

общее решение соответствующего ЛОДУ. Докажем предложение.

Общее решение ЛДУ ,

задается уравнениями

, где

.

Доказательство. То, что правые части указанных в формулировке теоремы равенств действительно являются решениями, проверяется их непосредственной подстановкой в исходное уравнение. Покажем, что любое решение уравнения имеет именно такой вид, какой указан в формулировке предложения. Пусть

- какое-нибудь решение уравнения

. Тогда

, но ведь и

. Вычтем из первого равенства второе и получим:

- однородное уравнение. Пишем сразу общее решение:

, откуда получаем:

. Доказательство завершено.

Встает вопрос о нахождении частного решения ЛДУ.

По теореме о линейном разложении НОД, это означает, что найдутся такие и

из множества целых чисел, что

, причем эти

и

мы легко умеем находить с помощью алгоритма Евклида. Умножим теперь равенство

на

и получим:

, т.е.

,

.

Таким образом, для нахождения общего решения находим общее решение ЛОДУ, частное решение ЛДУ и их складываем.

Замечание: особенно этот способ удобен, когда или

. Если, например,

,

, тогда n-ка

, очевидно, будет частным решением ЛДУ. Можно сразу выписывать общее решение.

Пример. ,

.

Найдем частное решение. Используем алгоритм Евклида.

;

Получаем линейное разложение НОД:

, т.е

.

,

Получили общее решение: , где

.

Как видим, получили решение, не совпадающее с решением, найденным первым способом.

Обозначим и получим

, т.е эти решения равносильны.

Способ 3.

Еще один способ опирается на теорему:

Пусть - произвольное решение диофантова уравнения

,

, тогда

множество решений уравнения в целых числах совпадает с множеством пар , где

,

, где t – любое целое число.

Доказательство этого несложного факта можно найти, например, в книге Бухштаба [2, стр. 114].

Опять же частное решение можно легко отыскать с помощью алгоритма Евклида.

4. Нахождение решений произвольного ЛДУ.

Перейдем теперь к решению ЛДУ с неизвестных, т. е. уравнений вида

где все коэффициенты и неизвестные – целые числа и хотя бы одно . Для существования решения по теореме 2, необходимо, чтобы

Положив

перейдем к равносильному уравнению

(*),

где

. Пусть

,

- два ненулевых числа, таких, что

Для определенности предположим, что

,

Разделив с остатком

на

, получим представление

. Заменив

на

в уравнении (*), приведем его к виду

Перепишем это уравнение в виде

(**)

где

,

.

Очевидно, что решения уравнения (*) и (**) связаны между собой взаимно однозначным соответствием и, таким образом, решив уравнение (**), несложно найти все решения уравнения (*). С другой стороны отметим, что

Отметим также, что

Следовательно, за конечное число шагов уравнение (*) приведется к виду

(***)

где числа (i = 1,...,n), которые не равны нулю, равны между собой по абсолютной величине. Из соотношения

следует, что числа

могут принимать только значения 0,±1, причем не все из них равны нулю. Предположим, для определенности,

. Тогда уравнение (***) имеет следующее решение:

где t2, t3, ..., tn - произвольные целые числа. Отсюда, учитывая проведенные замены, получается и решение уравнения (*). Отметим, что при получении решения уравнения (***) использовался лишь факт, что , поэтому, при выполнении алгоритма можно остановиться на том шаге, когда хотя бы один из коэффициентов станет равным ±1.

5. Примеры решений задач.

1). Решить в целых числах уравнение

4x - 6y + 11z = 7, (4,6,11)=1.

Разделив с остатком -6 на 4, получим -6 = 4(-2) + 2. Представим исходное уравнение в виде

4(x - 2y) + 2y + 11z = 7.

После замены x = x - 2y это уравнение запишется следующим образом

4x + 2y + 11z = 7.

Учитывая, что 11 = 2·5 + 1, преобразуем последнее уравнение:

4x + 2(y + 5z) + z = 7.

Положив y = y + 5z, получим

4x + 2y + z = 7.

Это уравнение имеет следующее решение: x, y - произвольные целые числа, z = 7 - 4x - 2y.

Следовательно y = y - 5z = 20x + 11y - 35, x = x + 2y = 41x + 22y - 70.

Таким образом, решение исходного уравнения имеет вид

, где

,

- произвольные целые числа.

2). Решить в целых числах уравнение

Разделим 5 на -4 с «остатком», , преобразуем исходное уравнение к виду

.

Заменив получим

, следовательно

, является решением данного ЛДУ.

Список литературы

Башмакова, И.Г. Диофант и диофантовы уравнения [Текст]. – М.: «Наука», 1972 г. - 68 с.

Бухштаб, А. А. Теория чисел [Текст]. - М.: Государственное учебно-педагогическое издательство министерства просвещения РСФСР, 1960. - 378 с.

Виноградов, И.М. Основы теории чисел: Учебное пособие. 11-е изд. [Текст]. – СПб.: Издательство «Лань», 2006. - 176 с.

Гаусс, Карл Фридрих Труды по теории чисел. Под общей ред. Виноградова И.М. [Текст] – М.: Изд. академических наук СССР, 1959 г. - 980 с.

Гельфонд, А.О. Решение уравнений в целых числах. Популярные лекции по математике, вып. [Текст]. М.: «Гостехиздат», 1957 г. - 66 с.

Давенпорт, Г. Введение в теорию чисел [Текст]: Пер. с английского Мороза Б.З. под ред. Линника Ю.В. – М.: «Наука», 1965 г. - 176 с.

Матисеевич, Ю.В. Десятая проблема Гильберта [Текст]. - М.: «Физматлит», 1973 г. - 224 с.

Михелович, Ш.Х. Теория чисел [Текст]. – М.: «Высшая школа», 1962 г. - 260 с.

Соловьев, Ю. Неопределенные уравнения первой степени [Текст]: Квант, 1992 г., №4.

Стройк, Д.Я. Краткий очерк истории математики [Текст]. – М.: «Наука», 1990 г. - 256 с.

Для подготовки данной работы были использованы материалы с сайта http://revolution.allbest.ru/

Характеристики

Тип файла
Документ
Размер
540,63 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6543
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее