47871 (608394)

Файл №608394 47871 (Оптимизация многомерной нелинейной функции. Слепой поиск)47871 (608394)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Аннотация

Данный курсовой проект на тему «Оптимизация многомерной нелинейной функции. Слепой поиск». Необходимо было разработать программную модель числового метода поиска экстремума функции двух переменных. Предусмотреть ввод исходных данных и вывод с сохранением. Исследовать ограничения на вводимую функцию, обусловленные методом поиска и средствами моделирования.

Проект содержит 24 листа, включая приложение, листинг программы и таблицу – 1.

Введение

Прикладные науки развиваются своим путем, используя существующий математический аппарат для решения возникающих проблем, и даже своими потребностями стимулируют в развитие некоторых разделов математики. Но в них нередко царят своя терминология, свои частные приемы решения задач, свои исходные предпосылки и цели. Имеют место ситуации, когда некорректно примененные прикладниками методы, тем не менее, позволяют получать полезные практические результаты. Дисциплина «Математическое моделирование» давно сформировалась, как прикладная наука и включена в подготовку специалистов почти по всем экономическим техническим направлениям.

Математическое моделирование как инструмент познания завоевывает все новые и новые позиции в различных областях деятельности человека. Эта наука широко проникла в различные области науки: экономические, социальные, биологические и многие другие, на первый взгляд, далекие от математики.

Основная задача моделирования различного рода процессов и систем с целью исследования объектов, прогнозирования их поведения или поиска наилучших условий функционирования сводится к расчету анализируемых показателей по математической модели при тех или иных значениях (функциях) входных величин. Важное значение при этом приобретают вычислительные алгоритмы, с помощью которых можно получить при моделировании решение конкретной математической задачи.

Знакомству с идеями и алгоритмами решения наиболее распространенных задач вычислительной математики, применяющихся при математическом моделировании, получению практических навыков их применения.

Оно включает в себя следующие основные темы.

  • Интерполяция

  • Аппроксимация

  • Решение нелинейных уравнений и их систем

  • Решение систем линейных уравнений

  • Вычисление интегралов

  • Основы решения дифференциальных уравнений

  • Метод оптимизации.

1. Постановка задачи

1.1 Теоретическое приложение

Концепция методов

В методах случайного поиска величина шага при построении улучшающей последовательности формируется случайным образом. Поэтому в одной и той же ситуации шаг может быть различен в отличие от регулярных методов. «Методы случайного поиска являются прямым развитием известного метода проб и ошибок, когда решение ищется случайно, и при удаче принимается, а при неудаче отвергается, с тем чтобы немедленно снова обратиться к случайности как к источнику возможностей. Такое случайное поведение разумно опирается на уверенность, что случайность содержит в себе все возможности, в том числе и искомое решение во всех его вариантах».

В данном разделе рассматриваются следующие методы:

  • Слепой поиск

  • Метод случайных направлений

  • Метод поиска с «наказанием случайностью»

  • Блуждающий поиск

В целом случайные методы поиска предпочтительнее регулярных в задачах высокой размерности и вдали от оптимума. Поэтому здесь они рассматриваются преимущественно в ознакомительном плане. Методы этой группы позволяют в среднем быстрее выходить в район оптимума. Эффективны рассматриваемые методы и при поиске глобального оптимума.

1.2 Основные методы

  1. Метод случайных направлений.

Из текущей (или заданной начальной) точки делается шаг в случайном направлении , где – случайный вектор с модулем, равным единице (случайно только его направление); – коэффициент пропорциональности шага. Если (при поиске минимума критерия оптимальности), то новая точка принимается за текущую, и из нее делаются шаги в надежде найти лучшую точку. Если , то делают новую попытку, то есть новый шаг .

Поиск заканчивают, когда за заданное число попыток не удается найти точку с лучшим значением критерия оптимальности, чем имеющаяся текущая.

Существуют модификации метода, в одной из которых после серии неудачных попыток уменьшается коэффициент , что позволяет «уточнить» положение оптимума. В этом случае условием окончания является малость значения шага (то есть ).

Существует также модификация метода с обратным шагом. Отличительной ее особенностью является то, что при неудачном шаге из точки сразу производится шаг в обратном направлении . При достаточном удалении от оптимума такая стратегия поиска может оказаться весьма эффективной. Если обратный шаг оказался неудачным, то можно сделать новый шаг из текущей точки или перейти к поиску с уменьшенным шагом. В последнем случае существует опасность замедления поиска вдали от оптимума, особенно в овраге.

  1. Метод поиска с «наказанием случайностью».

Метод является аналогом метода наискорейшего спуска, только направление локального поиска не градиентное, а случайное. Как и в предыдущем методе, из текущей точки делают случайные шаги до тех пор, пока не будет найдена точка с лучшим значением критерия оптимальности. Затем в этом направлении регулярным методом одномерного поиска ищут оптимум. В точке оптимума по направлению опять случайным образом ищут новое направление и т.д.

Условием окончания обычно является невозможность получения лучшей точки из текущей за предварительно заданное число попыток .

  1. Метод с «блуждающим поиском».

Данный метод является статистическим расширением градиентного метода и реализуется в соответствии с алгоритмом

где – случайный вектор с единичным модулем, и – коэффициенты, характеризующие вклад случайной составляющей и регулярной составляющей ( ) в величину шага.

Чаще в формуле для используется не градиент , а составляющие направляющие косинусы градиента, что позволяет выдерживать заданное соотношение между регулярной и случайной составляющими шага.

Теоретически доказывается, что данный алгоритм наиболее вероятно приведет к глобальному экстремуму. В алгоритме могут использоваться алгоритмы коррекции шага , свойственные градиентному методу, который включается после неудачных попыток. Условием окончания является малость значения шага .

Стратегия поиска может предусматривать не постоянное, а периодическое добавление случайного вектора к градиентному шагу. Частота случайных «скачков» должна уменьшаться по мере приближения к оптимуму и увеличиваться вдали от него. Для этого существуют специальные алгоритмы самообучения, например:

,

где – число шагов регулярным градиентным методом без случайной составляющей, т.е. период добавления случайной составляющей;

– заданное целое число (рекомендуется , при этом в процессе поиска будет изменяться в диапазоне ).

Обратно пропорционально частоте «скачков» меняется и доля случайной составляющей в шаге, т.е. . Условием окончания поиска будет, как и в регулярном градиентном методе, близость градиента к нулю.

Математическое описание

Метод слепого поиска

Идея метода очень проста и наглядна. Случайным образом в допустимой области берется точка, и сравнивается значение критерия в ней с текущим наилучшим. Если новая случайно взятая точка хуже хранящейся в качестве текущей лучшей, то берут другую точку. Если же нашли точку, в которой критерий лучше, то ее запоминают в качестве текущей лучшей. Гарантируется, что при неограниченном возрастании числа попыток мы будем приближаться к глобальному оптимуму, т.е. найденное текущее наилучшее значение будет столь угодно близко к точному решению.

На практике поиск прекращают, когда число неуспешных попыток превышает наперед заданное число .

Данный поиск можно применять для поиска начального приближения, задав сравнительно небольшое число попыток. Метод прост в алгоритмическом плане и не требует примера с конкретными значениями.

Для получения случайных чисел , принадлежащих открытому интервалу ( ) используют функцию преобразования

,

если нужны целые числа, используют

.

2. Блок – схема алгоритма моделирования









Y: = Funct ( )







X1opt: = x1

X2opt: = x2

Yopt: = y

X1opt: = x1

X2opt: = x2

Yopt: = y




О писание ввода – вывода

1 – вводим выбранную нами функцию;

2 – ввод выбранного нами интервала.

3 – вводим число итераций;

4 – основной цикл для вычислений;

5 – реализация случайной величины для получения значений координат точки;

6 – вычисляем значение функции;

7 – первая итерация;

8 – первое вычисляемое значение оптимально;

9 – выбираем следующее более оптимальное значение;

11 – текущее значение является оптимальным;

12 – выводим X1, X2, Y оптимальные, т.е. выводим минимум функции

Характеристики

Тип файла
Документ
Размер
4,52 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее