47095 (608080)
Текст из файла
Аннотация
Пояснительная записка курсовой работы "Интерполяция функции одной переменной методом Ньютона" содержит в себе введение, анализ задания описанием входных и выходных данных, обзор литературных источников, описание математической модели и методов вычислительной математики, пояснения к алгоритму, текст программы, инструкцию. При изучении дисциплины "Информатика" для написания курсовой работы использовались различные литературные источники, которые перечислены в настоящем документе. В данной курсовой работе приведена программа, которая применяется для интерполяции таблично заданной функции методом Ньютона. В ней был использован метод структурного программирования для облегчения написания и отладки программы, а также повышения ее наглядности и читаемости. Целью написания данной работы было получение и закрепление практических навыков разработки алгоритмов различными методами. Представленная программа реализована на языке программирования Pascal. Пояснительная записка содержит 25 листов, на которых размещено два рисунка, текст программы и описание программы и алгоритма.
Содержание
Введение
Анализ задания
Математическая модель задачи
Программирование функции формулы Ньютона
Обзор литературных источников
Разработка программы по схеме алгоритма
Инструкция пользования программой
Текст программы
Исходные данные и результат решения контрольного примера
Заключение
Список использованных источников
Введение
Современное развитие физики и техники тесно связано с использованием электронных вычислительных машин (ЭВМ). В настоящее время ЭВМ стали обычным оборудованием многих институтов и конструкторских бюро. Это позволило от простейших расчетов и оценок различных конструкций или процессов перейти к новой стадии работы - детальному математическому моделированию (вычислительному эксперименту), которое существенно сокращает потребность в натурных экспериментах, а в ряде случаев может их заменить.
Сложные вычислительные задачи, возникающие при исследовании физических и технических проблем, можно разбить на ряд элементарных -таких как вычисление интеграла, решение дифференциального уравнения и т. п. Многие элементарные задачи являются несложными и хорошо изучены. Для этих задач уже разработаны методы численного решения, и нередко имеются стандартные программы решения их на ЭВМ. Есть и достаточно сложные элементарные задачи; методы решения таких задач сейчас интенсивно разрабатываются.
В связи с этим современный специалист с высшим образованием должен обладать не только высоким уровнем подготовки по профилю своей специальности, но и хорошо знать математические методы решения инженерных задач, ориентироваться на использование вычислительной техники, практически освоить принципы работы на ЭВМ.
Анализ задания
В качестве входных данных использованы:
-
Количество узлов.
-
Табличные значения функции.
Выходными данными, т.е. результатом программы является:
-
Значения таблично заданной функции в промежуточных значениях.
-
График полинома.
Математическая модель задачи
При выполнении курсовой работы была выбрана следующая математическая модель:
Интерполяция и приближение функций.
1. Постановка задачи.
Одной из основных задач численного анализа является задача об интерполяции функций. Часто требуется восстановить функцию
для всех значений
на отрезке
если известны ее значения в некотором конечном числе точек этого отрезка. Эти значения могут быть найдены в результате наблюдений (измерений) в каком-то натурном эксперименте, либо в результате вычислений. Кроме того, может оказаться, что функция
задается формулой и вычисления ее значений по этой формуле очень трудоемки, поэтому желательно иметь для функции более простую (менее трудоемкую для вычислении) формулу, которая позволяла бы находить приближенное значение рассматриваемой функции с требуемой точностью в любой точке отрезка. В результате возникает следующая математическая задача.
Пусть и» отрезке
задана сетка со
и в ее узлах заданы значения функции
, равные
.
Требуется построить интерполянту — функцию
, совпадающую с функцией
в узлах сетки:
.
Основная цель интерполяции — получить быстрый (экономичный) алгоритм вычисления значений
для значений
, не содержащихся в таблице данных.
2. Интерполяция по Ньютону
Дана табличная функция:
| i |
|
|
| 0 |
|
|
| 1 |
|
|
| 2 |
|
|
| .. | .. | .. |
| n |
|
|
Или
,
(1)
Точки с координатами
называются узловыми точками или узлами.
Количество узлов в табличной функции равно N=n+1.
Необходимо найти значение этой функции в промежуточной точке, например,
, причем
. Для решения задачи используется интерполяционный многочлен.
Интерполяционный многочлен по формуле Ньютона имеет вид:
где n – степень многочлена,
Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен
через значение
в одном из узлов и через разделенные разности функции
, построенные по узлам
.
Сначала приведем необходимые сведения о разделенных разностях.
Пусть в узлах
,
известны значения функции
. Предположим, что среди точек
,
, нет совпадающих. Разделенными разностями первого порядка называются отношения
,
,
.
Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения
.
По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:
,
,
Таким образом, разделённая разность
-го порядка на участке
может быть определена через разделённые разности
-го порядка по рекуррентной формуле:
. (3)
где
,
,
- степень многочлена.
Максимальное значение
равно
. Тогда
и разделенная разность n-го порядка на участке
равна
,
т.е. равна разности разделенных разностей
-го порядка, разделенной на длину участка
.
Разделенные разности
являются вполне определенными числами, поэтому выражение (1) действительно является алгебраическим многочленом
-й степени. При этом в многочлене (1) все разделенные разности определены для участков
,
.
При вычислении разделенных разностей принято записывать их в виде таблицы
| | | ||||
| | |||||
| | | | |||
| | • | ||||
| | | • | • | • | |
| ■ | • | • | • | ||
| • | • | • | | ||
| • | • | | |||
| | |
Разделенная разность
-го порядка следующим образом выражается через значения функции
в узлах:
. (1)
Эту формулу можно доказать методом индукции. Нам потребуется частный случай формулы (1):
Интерполяционным многочленом Ньютона называется многочлен
Рассмотренная форма полинома Ньютона носит название первой интерполяционной формулы Ньютона, и используется, обычно, при интерполировании вначале таблицы.
Заметим, что решение задачи интерполяции по Ньютону имеет некоторые преимущества по сравнению с решением задачи интерполяции по Лагранжу. Каждое слагаемое интерполяционного многочлена Лагранжа зависит от всех значений табличной функции yi, i=0,1,…n. Поэтому при изменении количества узловых точек N и степени многочлена n (n=N-1) интерполяционный многочлен Лагранжа требуется строить заново. В многочлене Ньютона при изменении количества узловых точек N и степени многочлена n требуется только добавить или отбросить соответствующее число стандартных слагаемых в формуле Ньютона (2). Это удобно на практике и ускоряет процесс вычислений.
Программирование функции формулы Ньютона
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.














