46428 (607839), страница 2

Файл №607839 46428 (Разработка программы, реализующей алгоритм шифрования ГОСТ 28147-89) 2 страница46428 (607839) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

3.2.3 Базовые циклы криптографических преобразований

Базовые циклы построены из основных шагов криптографического преобразования, рассмотренного в предыдущем разделе. В процессе выполнения основного шага используется только один элемент ключа, в то время как ключ ГОСТ содержит восемь таких элементов. Следовательно, чтобы ключ был использован полностью, каждый из базовых циклов должен многократно выполнять основной шаг с различными его элементами.

Базовые циклы заключаются в многократном выполнении основного шага с использованием разных элементов ключа и отличаются друг от друга только числом повторения шага и порядком использования ключевых элементов. Ниже приведен этот порядок для различных циклов.

Цикл шифрования 32-З:

K0,K1,K2,K3,K4,K5,K6,K7,K0,K1,K2,K3,K4,K5,K6,K7,K0,K1,K2,K3,K4,K5,K6,K7, K7,K6,K5,K4,K3,K2,K1,K0.

Цикл дешифрования 32-Р:

K0,K1,K2,K3,K4,K5,K6,K7,K7,K6,K5,K4,K3,K2,K1,K0,K7,K6,K5,K4,K3,K2,K1,K0, K7,K6,K5,K4,K3,K2,K1,K0.

Цикл выработки имитовставки 16-З:

K0,K1,K2,K3,K4,K5,K6,K7,K0,K1,K2,K3,K4,K5,K6,K7.

Каждый из циклов имеет собственное буквенно-цифровое обозначение, соответствующее шаблону «n-X», где первый элемент обозначения (n), задает число повторений основного шага в цикле, а второй элемент обозначения (X), буква, задает порядок шифрования («З») или дешифрования («Р») в использовании ключевых элементов. Цикл дешифрования должен быть обратным циклу шифрования, то есть последовательное применение этих двух циклов к произвольному блоку должно дать в итоге исходный блок. Для выполнения этого условия для алгоритмов, подобных ГОСТу, необходимо и достаточно, чтобы порядок использования ключевых элементов соответствующими циклами был взаимообратным (рис. 2а, рис. 2б).

Схемы базовых циклов приведены на рисунках 2а, 2б, 2в. Каждый из них принимает в качестве аргумента и возвращает в качестве результата 64-битный блок данных, обозначенный на схемах N. Символ Шаг (N,Kj) обозначает выполнение основного шага криптопреобразования для блока N с использованием ключевого элемента K.

Рис. 2а. Схема цикла шифрования 32-З.

Рис. 2б. Схема цикла дешифрования 32-Р.


Рис. 2в. Схема цикла выработки имитовставки 16-З.

3.2.4 Основные режимы шифрования

ГОСТ 28147-89 предусматривает три следующих режима шифрования данных:

простая замена,

гаммирование,

гаммирование с обратной связью.

Кроме того, предусмотрен один дополнительный режим выработки имитовставки.

В любом из этих режимов данные обрабатываются блоками по 64 бита, на которые разбивается массив, подвергаемый криптографическому преобразованию, именно поэтому ГОСТ относится к блочным шифрам. Однако в двух режимах гаммирования есть возможность обработки неполного блока данных размером меньше 8 байт, что существенно при шифровании массивов данных с произвольным размером, который может быть не кратным 8 байтам.

Прежде чем перейти к рассмотрению конкретных алгоритмов криптографических преобразований, необходимо пояснить обозначения, используемые на схемах в следующих разделах:

Tо, Tш – массивы соответственно открытых и зашифрованных данных;

, – i-тые по порядку 64-битные блоки соответственно открытых и зашифрованных данных;

n – число 64-битных блоков в массиве данных;

ЦX – функция преобразования 64-битного блока данных по алгоритму базового цикла «X».

Далее описаны режимы шифрования по алгоритму ГОСТ 28147-89.

Простая замена.

Шифрование в данном режиме заключается в применении цикла 32-З к блокам открытых данных, дешифрование – цикла 32-Р к блокам зашифрованных данных. Это наиболее простой из режимов, 64-битовые блоки данных обрабатываются в нем независимо друг от друга. Схемы алгоритмов шифрования и дешифрования в режиме простой замены приведены на рисунках 3а и 3б соответственно.

Рис. 3а. Алгоритм шифрования данных в режиме простой замены.

Рис. 3б. Алгоритм дешифрования данных в режиме простой замены.

Размер массива открытых или зашифрованных данных, подвергающийся соответственно зашифрованию или расшифрованию, должен быть кратен 64 битам: |Tо|=|Tш|=64 · n , после выполнения операции размер полученного массива данных не изменяется.

Режим шифрования простой заменой имеет следующие особенности:

Так как блоки данных шифруются независимо друг от друга и от их позиции в массиве данных, при зашифровании двух одинаковых блоков открытого текста получаются одинаковые блоки шифртекста и наоборот. Отмеченное свойство позволит криптоаналитику сделать заключение о тождественности блоков исходных данных, если в массиве зашифрованных данных ему встретились идентичные блоки, что является недопустимым для серьезного шифра;

Если длина шифруемого массива данных не кратна 8 байтам или 64 битам, возникает проблема, чем и как дополнять последний неполный блок данных массива до полных 64 бит. Эта задача не так проста, как кажется на первый взгляд. Очевидные решения типа «дополнить неполный блок нулевыми битами» или «дополнить неполный блок фиксированной комбинацией нулевых и единичных битов» могут при определенных условиях дать в руки криптоаналитика возможность методами перебора определить содержимое этого самого неполного блока, и этот факт означает снижение стойкости шифра. Кроме того, длина шифртекста при этом изменится, увеличившись до ближайшего целого, кратного 64 битам, что часто бывает нежелательным.

На первый взгляд, перечисленные выше особенности делают практически невозможным использование режима простой замены, ведь он может применяться только для шифрования массивов данных с размером кратным 64 битам, не содержащим повторяющихся 64-битовых блоков. Кажется, что для любых реальных данных гарантировать выполнение указанных условий невозможно. Это почти так, но есть одно очень важное исключение: вспомните, что размер ключа составляет 32 байта, а размер таблицы замен – 64 байта. Кроме того, наличие повторяющихся 8-байтовых блоков в ключе или таблице замен будет говорить об их весьма плохом качестве, поэтому в реальных ключевых элементах такого повторения быть не может. Именно поэтому ГОСТ предписывает использовать режим простой замены исключительно для шифрования ключевых данных.

Гаммирование.

Гаммирование – это наложение (снятие) на открытые (зашифрованные) данные криптографической гаммы, т.е. последовательности элементов данных, вырабатываемых с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Для наложения гаммы при зашифровании и ее снятия при расшифровании должны использоваться взаимно обратные бинарные операции, например, сложение и вычитание по модулю 264 для 64-битовых блоков данных. В ГОСТе для этой цели используется операция побитового сложения по модулю 2, поскольку она является обратной самой. Гаммирование решает обе вышеупомянутые проблемы простой замены: во-первых, все элементы гаммы различны для реальных шифруемых массивов и, следовательно, результат шифрования даже двух одинаковых блоков в одном массиве данных будет различным. Во-вторых, хотя элементы гаммы и вырабатываются одинаковыми порциями в 64 бита, использоваться может и часть такого блока с размером, равным размеру шифруемого блока.

Гамма получается следующим образом: с помощью некоторого алгоритмического рекуррентного генератора последовательности чисел (РГПЧ) вырабатываются 64-битовые блоки данных, которые далее подвергаются преобразованию по циклу 32-З, то есть зашифрованию в режиме простой замены, в результате получаются блоки гаммы. Благодаря тому, что наложение и снятие гаммы осуществляется при помощи одной и той же операции побитового исключающего или, алгоритмы шифрования и дешифрования в режиме гаммирования идентичны, их общая схема приведена на рисунке 4.

РГПЧ, используемый для выработки гаммы, является рекуррентной функцией: где – элементы рекуррентной последовательности, а f – функция преобразования. Неизбежно возникает вопрос о том, что же представляет из себя элемент . В действительности, этот элемент данных является параметром алгоритма для режимов гаммирования, на схемах он обозначен как S, и называется в криптографии синхропосылкой, а в ГОСТе – начальным заполнением одного из регистров шифрователя. По определенным соображениям разработчики ГОСТа решили использовать для инициализации РГПЧ не непосредственно синхропосылку, а результат ее преобразования по циклу 32-З: . Последовательность элементов, вырабатываемых РГПЧ, целиком зависит от его начального заполнения, т.е. элементы этой последовательности являются функцией своего номера и начального заполнения РГПЧ: , где fi (X) = f (fi–1(X)), f0 (X) = X. С учетом преобразования по алгоритму простой замены добавляется еще и зависимость от ключа. Таким образом, последовательность элементов гаммы для использования в режиме гаммирования однозначно определяется ключевыми данными и синхропосылкой.

Рис. 4. Алгоритм шифрования (дешифрования) в режиме гаммирования.

Шаг 0. Определение исходных данных для основного шага криптопреобразования, где Tо(ш) – массив открытых (зашифрованных) данных произвольного размера, подвергаемый процедуре шифрования (дешифрования), по ходу процедуры массив подвергается преобразованию порциями по 64 бита; S – синхропосылка (64-битовый элемент данных, необходимый для инициализации генератора гаммы);

Шаг 1. Начальное преобразование синхропосылки, выполняемое для ее «рандомизации», т.е. для устранения статистических закономерностей, присутствующих в ней, результат используется как начальное заполнение РГПЧ;

Шаг 2. Один шаг работы РГПЧ, реализующий его рекуррентный алгоритм. В ходе данного шага старшая (S1) и младшая (S0) части последовательности данных вырабатываются независимо друг от друга;

Шаг 3. Гаммирование. 64-битовый элемент, выработанный РГПЧ, подвергается процедуре шифрования по циклу 32–З, результат используется как элемент гаммы для шифрования (дешифрования) очередного блока открытых (зашифрованных) данных того же размера.

Шаг 4. Результат работы алгоритма, представляющий собой зашифрованный (расшифрованный) массив данных.

Особенности гаммирования как режима шифрования:

Одинаковые блоки в открытом массиве данных дадут при зашифровании различные блоки шифртекста, что позволит скрыть факт их идентичности;

Поскольку наложение гаммы выполняется побитно, шифрование неполного блока данных легко выполнимо как шифрование битов этого неполного блока, для чего используется соответствующие биты блока гаммы. Так, для шифрования неполного блока в 1 бит согласно стандарту следует использовать самый младший бит из блока гаммы;

Синхропосылка, использованная при зашифровании, каким-то образом должна быть передана для использования при расшифровании. Это может быть достигнуто следующими путями:

хранить или передавать синхропосылку вместе с зашифрованным массивом данных, что приведет к увеличению размера массива данных при зашифровании на размер синхропосылки, то есть на 8 байт;

использовать предопределенное значение синхропосылки или вырабатывать ее синхронно источником и приемником по определенному закону, в этом случае изменение размера передаваемого или хранимого массива данных отсутствует.

Гаммирование с обратной связью.

Данный режим очень похож на режим гаммирования и отличается от него только способом выработки элементов гаммы – очередной элемент гаммы вырабатывается как результат преобразования по циклу 32-З предыдущего блока зашифрованных данных, а для шифрования первого блока массива данных элемент гаммы вырабатывается как результат преобразования по тому же циклу синхропосылки. Этим достигается зацепление блоков – каждый блок шифртекста в этом режиме зависит от соответствующего и всех предыдущих блоков открытого текста. Поэтому данный режим иногда называется гаммированием с зацеплением блоков . На стойкость шифра факт зацепления блоков не оказывает никакого влияния.

Рис. 5. Алгоритмов шифрования (дешифрования) в режиме гаммирования с обратной связью.

Шифрование в режиме гаммирования с обратной связью обладает теми же особенностями, что и шифрование в режиме обычного гаммирования, за исключением влияния искажений шифротекста на соответствующий открытый текст. Для сравнения запишем функции дешифрования блока для обоих упомянутых режимов:

гаммирование – , где Гi – i-тый элемент гаммы;

гаммирование с обратной связью – .

Если в режиме обычного гаммирования изменения в определенных битах шифротекста влияют только на соответствующие биты открытого текста, то в режиме гаммирования с обратной связью картина несколько сложнее. Как видно из соответствующего уравнения, при расшифровании блока данных в режиме гаммирования с обратной связью, блок открытых данных зависит от соответствующего и предыдущего блоков зашифрованных данных. Поэтому, если внести искажения в зашифрованный блок, то после дешифрования искаженными окажутся два блока открытых данных – соответствующий и следующий за ним.

Характеристики

Тип файла
Документ
Размер
1,26 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов стандарта

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6508
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее