11440 (600560)

Файл №600560 11440 (Газовая оболочка Земли)11440 (600560)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Газовая оболочка Земли

Введение

Становление Земли как планеты сопровождалось формированием ее зонального строения и общепланетарной дифференциацией химических элементов. Принято считать, что первым результатом дифференциации было образование тяжелого ядра и силикатной мантии. Результаты изотопного анализа дают основание предполагать, что возникновение наружных фазовых оболочек – твердой, жидкой и газовой – также произошло на раннем этапе развития планеты.

Обособление наружных оболочек не означает, что одновременно был образован их стабильный химический состав. С момента обособления началась эволюция их состава, в которой выдающуюся роль сыграло живое вещество. Наиболее сильно воздействие биогеохимических процессов сказалось на составе атмосферы.

1. Биогеохимическая эволюция состава атмосферы и жизнедеятельности организмов в массообмене газов

История формирования атмосферы служит ярким примером воздействия живого вещества на окружающую среду. Факты, полученные в последние годы, свидетельствуют, что состав современной газовой оболочки Земли является итогом длительного процесса, в котором ведущее значение имела геохимическая деятельность живых организмов.

Масса атмосферы составляет около 5,21015 т. Основная часть газового вещества (80%) заключена в тропосфере, верхняя граница которой расположена на высоте около 17 км на экваторе, к полюсам она снижается до 8 – 10 км. Верхняя граница тропосферы – тропопауза – намечает область сильного снижения температуры и отсутствия скопления паров воды. Тропосфера является областью активного взаимодействия с океаном и сущей, в ней сосредоточена основная масса паров воды и мелких твердых частиц, переносимых воздушными массами. В тропосфере происходят фотохимические реакции, имеющие важное значение для биосферы.

Выше тропопаузы, в стратосфере и мезосфере, нарастает разреженность газов, сложно меняются термические условия. На высоте 25 – 30 км под воздействием солнечной радиации происходит Фотодиссоциация молекул кислорода и образуется озон. Молекулы озона сильно рассеяны. Если бы они находились в условиях, обычных для поверхности Земли, под давлением 1 атм (101325 Па), то мощность озонового слоя была бы менее 1 см. Очень разреженный слой озона поглощает 97% ультрафиолетовой части солнечной радиации. Без этого экрана существование жизни на поверхности суши было бы невозможно.

На удалении от 80 до 800 км от поверхности Земли располагается ионосфера – область сильно разреженного, ионизированного газа. Самая наружная часть газовой оболочки – экзосфера – простирается до 1800 км. Из этой сферы происходит диссипация – потеря Землей наиболее легких атомов водорода и гелия.

Состав газовой оболочки Земли, как и состав Океана, в значительной мере обусловлен деятельностью живых организмов и поддерживается системой биогеохимических циклов. В настоящее время газовое вещество атмосферы на 99,9% состоит из азота, кислорода и аргона (табл. 1). Среди компонентов, содержащихся в малых количествах, можно выделить пары воды, инертные газы и соединения, обусловленные биологическими процессами и фотохимическими реакциями.

Таблица 1. Химический состав атмосферы

Компонент

Содержание, % объема

Масса, 109 т

Сухой воздух

100,00

5,12106

N2

78,08

3,87106

О2

20,95

1,18106

Аг

0,93

6,59104

СО2

0,032

2,45103

Ne

1,82 10-3

64,8

Не

5,2410-4

3,71

Кг

1,1410-4

16,9

Хе

8,710-6

2,02

СН4

1,510-4

4,30

Н2

5,010-5

0,18

N2О

3,010'5

2,30

СО

1,210-5

0,59

NH3

1,010-6

0,03

NO2

1,010-7

0,0081

H2S

2,010-8

0,0012

Большой интерес для реконструкции истории атмосферы представляет геохимия инертных газов. Относительно высокое содержание аргона связано с тем, что большая часть этого газа представлена изотопом 40Аг, образованным за счет распада радиоактивногол изотопа калия 40К. Количество гелия в атмосфере, наоборот, в 1000 раз меньше, чем должно быть. Это обусловлено непрерывной диссипацией этого элемента. Остальные инертные газы содержатся в том количестве, в каком они были выделены на протяжении всего времени существования Земли. Изучение соотношения изотопов ксенона привело геохимика Ю.А. Шуколюкова (1988) к заключению, что газовая оболочка возникла за очень короткий отрезок времени, который примерно совпадает со временем аккреции Земли. Предполагают, что быстрое образование атмосферы обусловлено энергичным выделением газов при ударах метеоритных тел на ранней стадии развития земной коры.

В составе первичной атмосферы присутствовали пары воды, СО2, N2, NH3, H2, H2S, CO, CH4, HF, HC1. Преобладал, по-видимому, азот. Содержание СО2 было не слишком высоким, не позволившим из-за «парникового эффекта» испариться древнему океану. Газы, поступавшие из недр Земли (за исключением инертных), были представлены, как и современные вулканические эманации, восстановленными или недоокисленными соединениями.

Под воздействием солнечной радиации в атмосфере происходила диссоциация паров воды. Непрерывное удаление главного восстановителя – водорода – в результате диссипации вызывало прогрессирующее накопление окислителей. Это имело два важных последствия. Во-первых, постепенно образовывался экран, предохраняющий поверхность Земли от ультрафиолетовой радиации. Во-вторых, возник процесс окисления восстановленных газов, непрерывно поступавших из мантии, окислителями фотохимического происхождения, которые постоянно возобновлялись в результате диссипации водорода. Окисленные соединения растворялись в конденсирующейся атмосферной влаге и вымывались из атмосферы дождями. Этот процесс, имевший циклический характер, наметил направленность будущих биогеохимических циклов.

Наиболее древние биогеохимические процессы, очевидно, связаны с жизнедеятельностью хемолитотрофных бактерий. В качестве аналога форм древней жизни микробиологи рассматривают термофильные литотрофные бактерии, существующие в горячих источниках при температуре, близкой к 100°С. Специальные микробиологические исследования наземных и подводных гидротерм а дне океана показали, что в настоящее время существуют сообщества термохемолитотрофных бактерий, субстратом которых служат вулканические газы. Такие микроорганизмы окисляли восстановленные газообразные соединения и за счет энергии этих реакций синтезировали органическое вещество. Разумеется, это не сопровождалось продуцированием кислорода. Хемолитотроф-ные сообщества, включившиеся в механизм взаимодействия окислителей атмосферы с восстановленными газами, выделявшимися из земных недр, знаменуют первый этап геохимической деятельности живого вещества. Вхождение организмов в глобальную систему миграции – выделение газов из Земли в атмосферу, их окисление и последующее вымывание из атмосферы – усложнило систему и превратило ее из абиогенной в биогенно-абиогенную.

Следующий этап связан с распространением цианобактерий (сине-зеленых водорослей), которые для синтеза органического вещества начали использовать не энергию окислительно-восстановительных химических реакций, а световую энергию Солнца. Признаки деятельности этих простейших форм жизни отмечены уже в самых древних геологических образованиях. Таков комплекс пород Исуа в Западной Гренландии, содержащий органические соединения и оксиды железа и имеющий возраст 3,8 млрд. лет; углеродистые сланцы Онвервахт серии Свазиленд в Южной Африке с возрастом 3,4 млрд. лет. В кремнистых образованиях Варавууна (Западная Австралия), возраст которых определен в 3,5 млрд. лет, уже обнаружены строматолиты – структуры, созданные сообществами цианобактерий. Древнейшие жизненные процессы протекали в водной среде при наличии свободного кислорода, свидетельством чему являются полосчатые железо-оксидные кварциты Исуа. Возможно, присутствие свободного кислорода было не повсеместным, а лишь на отдельных участках. При реакции фотосинтеза кислород стал выделяться в качестве метаболита. Для цианобактерий свободный кислород токсичен, они нормально развиваются при его отсутствии. Широкому распространению цианобактерий в древнем океане способствовало быстрое связывание кислорода в форме оксида железа и сульфатов. По этой причине, несмотря на фотосинтетическую деятельность цианобактерий, содержание свободного кислорода в океане и атмосфере длительное время не увеличивалось. Лишь после окисления двухвалентного железа, растворенного в древних океанах и первоначально связанного в форме сидеритов, из которых впоследствии образовались мощные толщи железистых кварцитов (джес-пелитов), началось накопление кислорода в атмосфере. По расчетам немецкого геохимика М. Шидловского (1980), в оксидах железа связано примерно 56% всего выделившегося в результате фотосинтеза кислорода, в сульфатах – 39% и только 5% находится в свободном состоянии и распределено между атмосферой и океаном (рис. 3.1).

Рис. 1. Поступление и распределение масс кислорода фотосинтетического происхождения в биосфере

Восходящая кривая – биогенное продуцирование кислорода; вертикальная линия – начало летописи осадкообразования и появление полосчатых песчаников с оксидами железа, вехи биологической революции; I – появление фотоавтотрофных сине-зеленых водорослей, II – появление эукариот; III – появление древней морской многоклеточной фауны; IV – распространение жизни на сушу; V – появление континентальной растительности; распределение масс кислорода: 1 – связанный в [SO4]-2; 2 – связанный в Fe2O3; 3 – свободный молекулярный в системе океан – атмосфера

Содержание кислорода в атмосфере стало увеличиваться 1,8 – 2,0 млрд лет назад. Это проявилось в образовании континентальных красноцветных толщ, свидетельствующих о том, что окисление растворенного в океане железа в основном закончилось и началось его окисление на суше.

Биогеохимической особенностью цианобактериальной системы являлось преобладание продукционных процессов над деструкционными. В результате этого в толще осадков древних морей было погребено огромное количество органического углерода, а в окружающую среду выделено в 2,7 раза большее количество кислорода. Изменение геохимии древних океанов и атмосферы создало предпосылки для совершенствования биогеохимических Циклов.

По мнению микробиологов, прокариоты (бактерии и сине-зеленые водоросли) отличаются большой устойчивостью и консервативностью. Функционирование прокариотной системы продолжалось на протяжении огромного интервала времени – 1,5–2 млрд. лет. Около 1,5 млрд. лет назад произошел постепенный переход от цианобактериальных сообществ к сообществам алъгобактериалъным. Вероятно, определяющую роль в этом событии сыграло накопление свободного кислорода в океане и атмосфере и как результат – создание новых условий, в которых конкурентность цианобактерий была невысокой. В глобальном процессе создания органического вещества водоросли постепенно заместили цианобактерий. В конце протерозоя на протяжении венда (670–570 млн. лет назад) сложилась система из продуцентов-фотосинтетиков и консументов-животных, обусловливающая углерод-кислородный биогеохимический цикл.

Формирование химического состава атмосферы происходило путем закономерной дифференциации химических элементов, выделенных из недр Земли в виде восстановленных газов. Система, обеспечивающая указанную дифференциацию, изначально абиогенная и имевшая циклический характер, являлась главной и характерной чертой среды развития древнейших организмов, которые заняли в ней определенное место. Вначале биогеохимические процессы выполняли роль отдельных звеньев в системе глобального круговорота газов в атмосфере. В дальнейшем по мере развития форм жизни циклическая миграция газов стала контролироваться жизнедеятельностью организмов. Это оказывало влияние на состав атмосферы, океана и горных пород на поверхности древней суши. В свою очередь, изменение эколого-геохимических условий среды обитания оказывало воздействие на развитие организмов и совершенствование структуры биогеохимических циклов. Со времени широкого распространения эукариот ведущим в глобальной системе биогеохимических циклов стал углерод-кислородный цикл. После освоения организмами суши и появления высшей наземной растительности последняя вместе с почвой становится главным звеном этого цикла.

Прогрессирующее накопление органического вещества в осадках океана, изменение их состава и образование кислородной атмосферы, обусловленные биогеохимической деятельностью живых организмов на фоне геологического времени, показано на рис. 2.

Характеристики

Тип файла
Документ
Размер
2,24 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6955
Авторов
на СтудИзбе
264
Средний доход
с одного платного файла
Обучение Подробнее