11440 (600560), страница 3
Текст из файла (страница 3)
Тысячи тонн металлов и мышьяка, сотни тонн селена, ртути, сурьмы находятся в километровом слое воздуха над континентами (приведенные данные относятся к природному явлению, не связанному с производственной деятельностью людей).
Носителями рассеянных элементов служат аэрозольные частицы. Сопоставление распределения ядер конденсации (аэрозольных частиц) и концентрации тяжелых металлов в воздухе иллюстрирует их тесную связь (рис. 3). Поэтому для понимания закономерностей миграции химических элементов в атмосфере очень ценны результаты изучения динамики и состава аэрозолей.
Рис. 3. Распределение тяжелых металлов и ядер конденсации в тропосфере
По оси абсцисс отложены значения отношения концентрации металла на данной высоте к его концентрации на высоте 50 м от поверхности. Концентрация аэрозольных частиц над континентами обычно измеряется десятками микрограммов в кубическом метре воздуха. Дж.М. Просперо (1979) обобщил результаты анализа многочисленных проб воздуха, отобранных в разных районах Мирового океана, и установил, что концентрация (мкг/м3) терригенных минеральных частиц колеблется от 0,4 до 14, а солевых частиц – от 3,3 до 8,7, в сумме составляя около 10. Концентрация аэрозольных частиц в прибрежной циркумконтинентальной зоне океана в среднем составляет 50 мкг/м3.
Дисперсные частицы, находящиеся в тропосфере, могут быть удалены из нее либо в результате осаждения под действием силы тяжести, либо путем вымывания атмосферными осадками. С помощью изотопов 210Pb, 210Bi, 210Po американские ученые установили, что среднее время нахождения пыли в районе Денвера (США) равно 4 сут. Самые мелкие частицы, вымываемые дождем, находятся в атмосфере около 7 сут. Имеющиеся данные позволяют заключить, что над континентами длительность нахождения частиц в воздухе («время жизни» аэрозолей) колеблется от 1 до 30–40 сут., чаще всего около 5 сут.
Хотя миграция основных масс аэрозолей происходит в тропосфере, очень небольшая их часть поступает и в стратосферу, где находится от 4 до 14 лет. Размер этих частиц 0,2–2 мкм. Их перенос осуществляется преимущественно с востока на запад очень быстрыми струйными течениями. В стратосфере отсутствуют пары воды. Предполагается, что удаление аэрозолей связано с образованием медленно осаждающихся хлопьев сульфатов, захватывающих мелкие частицы («сульфатное вымывание»). Основное выпадение происходит в аридных и полярных зонах. Масса осаждающихся стратосферных аэрозолей в Северном полушарии оценивается от 2 до 3 мг/км2 в 100 лет. По-видимому, близкое количество тонких частиц поступает в стратосферу.
Состав аэрозолей континентального и океанического происхождения существенно различается. В аэрозолях, поступивших в атмосферу с поверхности континентов, на уровне кларков земной коры содержатся такие типичные терригенные элементы, как кремний, алюминий, железо, титан, цирконий, иттрий, лантан, cкандий. В океанических аэрозолях доминируют катионогенные элементы морских солей: натрий, магний, кальций, стронций. В то же время для аэрозолей характерна повышенная (относительно терригенных химических элементов) концентрация некоторых тяжелых металлов и близких им поливалентных элементов: мышьяка, сурьмы, висмута.
Для оценки избирательной аккумуляции химических элементов в аэрозолях автор предложил использовать коэффициент аэрозольной аккумуляции Ка:
Ка = А/К,
где А – содержание элемента в твердой фазе аэрозоля;
К – кларк этого же элемента в гранитном слое континентальной земной коры. Расчет производится на твердое вещество аэрозолей.
Из табл. 2 следует, что при формировании аэрозолей концентрация одних элементов в твердых частицах аэрозолей возрастает на 1–2 математических порядка по сравнению с гранитным слоем литосферы (кадмий, свинец, цинк), а других изменяется слабо (ванадий, титан).
Таблица 2. Коэффициент концентрации некоторых рассеянных элементов в континентальных аэрозолях
| Металл | Коэффициент аэрозольной аккумуляции | Интенсивность обогащения |
| Кадмий | > 100 | Очень сильная |
| Свинец, олово | 50–100 | Сильная |
| Цинк, медь, никель, хром | 10–50 | Средняя |
| Ванадий | 1–10 | Умеренная |
| Титан | < 1 | Отрицательная |
Повышенная концентрация некоторых элементов в континентальных аэрозолях обусловлена несколькими причинами. Первая из них заключается в составе исходного материала, поступающего в тропосферу в качестве аэрозольных частиц. Если бы ветром захватывались только мелкие обломки горных пород, то состав аэрозольных частиц должен быть идентичен составу литосферы. Но развеиванию подвергаются преимущественно не свежие горные породы, а рыхлые продукты выветривания и почвы. В верхнем горизонте продуктов выветривания концентрация некоторых элементов повышена вследствие их накопления в растительных остатках, гумусе или на поверхности глинистых частиц. Установлено, что концентрации металлов в континентальной пыли и почве близки. Таким образом, дисперсные частицы, поступившие с поверхности суши в тропосферу, могут быть изначально обогащены некоторыми элементами.
Минеральная пыль, содержащаяся в приземном слое тропосферы над залежами руд, содержит повышенные концентрации металлов за счет развеивания рыхлых продуктов выветривания, обогащенных рудными элементами. Это явление использовано в предложенном в 1967 г. О. Вейссом аэрогеохимическом методе поиска месторождений руд. Метод заключается в отборе при помощи фильтров минеральной пыли из воздуха на небольшой высоте и ее последующего анализа. Проведенные в северной части Капской провинции ЮАР исследования показали, что в пыли над месторождениями руд содержание свинца от 5 до 10 раз выше, чем за пределами рудного поля.
Как правило, обогащенность металлами рыхлых продуктов выветривания значительно меньше той, которая обнаруживается в аэрозолях. Из данных табл. 2 следует, что концентрация некоторых тяжелых металлов в сотни раз превышает их кларковые значения для литосферы. Вероятно, обогащение аэрозолей такими металлами происходит непосредственно в тропосфере. На это указывают результаты изучения массообмена тяжелых металлов в системе поверхность суши – тропосфера – поверхность суши и анализ миграционного цикла свинца.
В рыхлых продуктах выветривания, которые покрывают поверхность суши и активно развеиваются ветром, концентрация свинца около 20 мкг/г. При среднем содержании пыли в тропосфере 30 мкг/м3 можно ожидать в 1 м3 воздуха 0,6 нг свинца, а во всей тропосфере над сушей, не покрытой ледниками, – около 80–90 т. В действительности концентрация этого металла в континентальных аэрозолях, как правило, значительно выше: от 30–50 до 100 мкг/г и более. Коэффициент аэрозольной аккумуляции свинца обычно равен 30–60. Указанные концентрации свинца в твердой фазе аэрозолей обусловливают его содержание в воздухе незагрязненных районов соответственно от 0,9–1,5 до 3 нг/м3 и более. При таких концентрациях в приземном слое тропосферы высотой 1 км над сушей должно находиться свинца от 120–200 до 400 т и более.
Таким образом, разница между массой свинца, которую можно ожидать, исходя из концентрации металла в рыхлых продуктах выветривания, покрывающих поверхность континентов, с одной стороны, и его концентрации в твердой фазе аэрозолей – с другой, составляет от нескольких сотен до 1–2 тыс. т. Эта разница окажется еще больше, если учитывать цикличность миграции тонкой пыли в тропосфере.
Экспериментальные исследования с помощью изотопа 210Рb показали, что для основной массы пылевых частиц – носителей свинца – наиболее обычен период полного возобновления около 7 сут (Fransis C.e.a., 1970). Можно предположить, что циклическая обращаемость пылевых частиц в системе поверхность суши – тропосфера – поверхность суши составляет около 50 раз в год.
В результате многократного выпадения аэрозолей на поверхность Мировой суши поступает от 10103 до 100103 т/год свинца.
В научных центрах разных стран в 70–80-х гг. прошлого века было проведено детальное изучение фракционного состава воздуха нижней тропосферы с применением ультрамелких фильтров и улавливанием парогазовой фракции после прохождения фильтров. Установлено, что рассеянные в тропосфере химические элементы находятся в разных формах, в том числе парогазовой. В парогазовой форме присутствуют не только элементы, отличающиеся хорошей возгоняемостью (йод, мышьяк, ртуть), но и такие тяжелые металлы, как цинк, медь, свинец. Перечисленные элементы тесно связаны с наиболее мелкими частицами аэрозолей размером менее 0,5 мкм. Очевидно, существует подвижное равновесие между элементами в парогазовой форме и фиксированными на поверхности мелких частиц аэрозолей. В то же время есть элементы, масса которых сосредоточена преимущественно в относительно крупных частицах аэрозолей. Таковы алюминий, железо, скандий, барий, лантан, иттрий и некоторые другие.
Расчет коэффициентов обогащения элементов аэрозолей относительно среднего состава земной коры показал, что концентрация элементов, присутствующих в парогазовой форме, сильно возрастает в ультрамелких фракциях аэрозолей. Относительная концентрация элементов, основная масса которых находится в частицах крупнее 0,5–1,0 мкм, изменяется слабо. В качестве примера в табл. 3 приведено распределение элементов между аэрозольными частицами разной крупности в приземном слое тропосферы в высокогорном районе одного из хребтов Тянь-Шаня (Средняя Азия). Район располагается на южном склоне Чаткальского хребта, на высоте 600 м над уровнем моря и имеет координаты 41° 06' с.ш. и 69° 30' в. д. Район находится в пределах заповедной территории и удален на значительное расстояние от возможных источников загрязнения. Из данных таблицы видно, что основная масса содержащегося в воздухе железа и скандия присутствует в аэрозольных частицах крупнее 0,4 мкм, а значительная часть меди, цинка, ртути связана с наиболее мелкими частицами и парогазовой фазой.
Определенные химические элементы, в том числе многие тяжелые металлы, поступают в тропосферу в парогазовой форме, а затем сорбируются наиболее мелкими аэрозольными частицами и при их выпадении выводятся из тропосферы. Механизм этого процесса хорошо прослеживается для элементов, легко переходящих в парообразное состояние. Примером может служить ртуть. Этот металл испаряется при любой температуре, существующей на поверхности Земли, вплоть до точки плавления (38 °С). Пары ртути не только хорошо диффундируют через почву, но и достаточно легко проникают через воду.
Таблица 3. Распределение химических элементов между аэрозольными типами и парогазовой фазой в атмосфере Сары-Челекского заповедника
| Химический элемент | Размер частиц, мкм | |||
| > 1,0 | 1,0 -0,4 | сумма > 0,4 | сумма < 0,4 | |
| Fe | 37 | 55 | 92 | 8 |
| Со | 30 | 58 | 88 | 11 |
| Sc | 71 | 16 | 87 | 13 |
| Сu | 48 | 4 | 52 | 44 |
| Zn | 16 | 6 | 22 | 78 |
| Hg | 14 | 8 | 22 | 77 |
| As | 51 | 5 | 56 | 44 |
| Вг | 22 | 16 | 38 | 62 |
На основании зондирований с самолетов установлено, что на высоте 3 км концентрация паров ртути очень мала. На высоте 50 м от земной поверхности концентрация обычно равна (0,4–1,0)10-9 г/м3. Пары ртути выводятся из тропосферы в результате сорбции их частицами аэрозолей, которые осаждаются в среднем около 5 сут. Согласно Б.П. Абрамовскому равновесие между парами и сорбированными формами достигается также за 5 сут. Следовательно, время жизни ртути в системе поверхность суши – тропосфера около 10 сут.













