10780 (600445)

Файл №600445 10780 (Ферменты биологической мембраны)10780 (600445)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

9



Федеральное агентство по образованию

Пензенский государственный педагогический университет им. В.Г Белинского

Факультет: естественно-географический

Кафедра биохимии

Ферменты биологической мембраны

Курсовая работа

Выполнила: студентка гр. БХ-41

Бунтова Татьяна Ивановна

Проверил: к. б. н.

Соловьёв Владимир Борисович

Пенза, 2009

Содержание

Введение

  1. Классификация ферментов биологической мембраны

  2. Биологическое значение мембранной организации ферментов

  3. Изучение активности мембранных ферментов

  4. Регуляция активности мембраносвязанных ферментов

Заключение

Литература

Введение

Многие клеточные процессы катализируются мембраносвязанными ферментами. При этом мембрана может выполнять целый ряд функций. Связав фермент с определённой мембраной или участком на мембране, можно локализовать каталитический центр в определённой части клетки. Существует множество примеров, когда несколько действующих последовательно ферментов организованы подобным образом в суперкомплекс, что позволяет увеличить суммарную скорость реакции. Многие мембранные ферменты представляют собой белки, пронизывающие мембрану насквозь, и участвуют в трансмембранном транспорте растворённых веществ или в передаче информации с одной стороны бислоя на другую в форме трансмембранного аллостерического сигнала. Другие ферменты являются периферическими мембранными белками и в некоторых случаях способны связываться с мембраной только в ответ на определённый физиологический сигнал.

Цель работы: изучение ферментов биологической мембраны.

Для реализации этой цели были поставлены следующие задачи:

  1. Ознакомиться с литературой;

  2. Изучить виды ферментов биологической мембраны, их биологическое значение.

  3. Ознакомиться с проблемой изучения каталитической активности мембранных ферментов.

  1. Классификация ферментов биологической мембраны

Биомембрана – это не просто некая пассивная структура, ограничивающая водные компартменты. Уже краткое знакомство с типами ферментов, связанных с мембранами, показывает, насколько разнообразны ассоциированные с мембранами каталитические активности.

  1. Трансмембранные ферменты, катализирующие сопряжённые реакции на противоположных сторонах мембраны. Характерными примерами могут служить окислительно-восстановительные ферменты, например фотосинтетические реакционные центры растений и бактерий или цитохром с-оксидаза митохондрий. Расположенные на противоположных сторонах мембраны активные центры этих ферментов сопряжены друг с другом с помощью потока электронов, генерирующего трансмембранный электрический потенциал. К этому классу ферментов могут быть отнесены также многие рецепторы. Связывание лиганда (например, гормона) с доменом, локализованным с наружной стороны клеточной мембраны, приводит к изменениям в цитоплазматическом домене фермента, которые, в свою очередь, инициируют клеточный ответ. В этом случае через мембрану переносится информация, а не заряды или какие-либо растворенные молекулы. Показано, что некоторые рецепторы являются тирозиновыми протеинкиназами (см. разд. 9.7) и, следовательно, представляют собой мембранные ферменты, обладающие каталитической активностью.

  2. Трансмембранные ферменты, участвующие в транспорте веществ. Многие мембранные белки участвуют в транспорте молекул через бислой. Активный транспорт может быть сопряжен с гидролизом ATP, как в случае Ca-ATPазы саркоплазматического ретикулума. Движущей силой активного транспорта могут быть также ионные градиенты.

  3. Белки, являющиеся компонентами электронтранспортных цепей. Наиболее типичные ферменты этого класса — компоненты дыхательной цепи митохондрий, заканчивающейся цитохром с оксидазой; ферменты системы электронного транспорта микросом, включающие цитохром Р450 и цитохром b5; элементы фотосинтетической электронтранспортной цепи в тилакоидах. Локализация компонентов электронтранспортных цепей в мембране приводит к увеличению их локальной концентрации, что позволяет значительно ускорить перенос электронов между молекулами.

  4. Ферменты, способные использовать мембраносвязанные субстраты. В этот класс могут входить ферменты, участвующие в метаболизме компонентов мембраны: фосфолипидов, гликолипидов, олиизопреноидных соединений и стероидов, а также ферменты, частвующие в процессинге мембранных и секреторных белков. В большинстве случаев эти ферменты являются интегральными мембранными белками, но иногда (примером могут служить фосфолипазы) представляют собой растворимые белки, лишь временно связанные с мембраной. Примерами белков этого типа являются лидерная пептидаза из Е.соli и фосфолипаза С, связанные с мембраной посредством гликозилфосфатидилинозитольного якоря.

  5. Ферменты, использующие водорастворимые субстраты. Многие мембраносвязанные ферменты используют растворимые субстраты. В некоторых случаях фермент локализуется в такой области мембраны, где велика концентрация субстрата. Например, ацетилхолинэстераза, катализирующая гидролиз ацетилхолина, по-видимому, фиксируется в постсинаптической мембране с помощью ковалентной сшивки с фосфатидилинозитольным гликолипидом. Целый ряд ферментов, участвующих в гидролизе крахмала и белков, прикрепляется к мембранам микроворсинок кишечника с помощью гидрофобных доменов, расположенных в N-концевой части полипептидов.

  6. Ферменты, образующие мембраносвязанный комплекс для облегчения канализации субстрата. Мембраны могут служить своеобразным организующим каркасом, с которым связываются периферические ферменты с образованием мультиферментного комплекса. Имеются косвенные данные о том, что участвующие в реакциях цикла Кребса ферменты матрикса митохондрий связываются с мембраной таким образом, что продукт одного фермента становится субстратом другого, не выходя за пределы мультиферментного комплекса.

  7. Ферменты, которые совершают челночные перемещения между цитозолем и мембраной и активность которых модулируется связыванием с мембраной. Эта группа мембранных ферментов обнаружена недавно. Они способны связываться либо прямо с поверхностью фосфолипидного бислоя, либо со специфическими белковыми рецепторами. Чаще всего эти ферменты активируются при связывании с мембраной, но иногда наблюдается и их инактивация. Типичными примерами ферментов, активирующихся при связывании, являются пируватоксидаза из Е. соli, протеинкиназа С и некоторые ферменты, участвующие в каскаде свертывания крови.

  1. Биологическое значение мембранной организации ферментов

Изучение роли мембранной организации белков непосредственно в живом организме затруднено из-за сложной организации живой материи и одновременного протекания множества взаимосвязанных процессов. Однако, возможность проведения мутации генов, обеспечивающей избирательные изменения в структуре экспрессируемых белков, например, экспрессию только растворимых форм белков, позволяет в некоторых случаях показать важность функционирования именно мембраносвязанных белков. Рассмотрим это на примере Kit-лиганда — одного из мембраносвязанных факторов роста млекопитающих. Для мутантной формы этого интегрального гликопротеина I типа, не содержащей трансмембранного и цитоплазматического доменов, была продемонстрирована нормальная экспрессия in vivo и биологическая активность при исследовании слияния клеток, аналогичная активности секретируемой формы нативного белка. Однако у мыши, имеющей ген такого белка, проявлялись все симптомы животного, вообще лишенного гена Кit-лиганда — макроцитарная анемия, бесплодие, белый окрас.

Недавние исследования также убедительно подтверждают физиологическую значимость мембранной формы АПФ. Мышь, у которой ген нативного АПФ был заменен на ген, кодирующий фермент без якоря таким образом, что весь секретируемый фермент был активен, однако не встраивался в мембрану, имела все симптомы «нокаутного» животного, полностью лишенного гена АПФ: низкое давление, неконтролируемое мочеиспускание, бесплодие, различные сосудистые дисфункции, нарушения структуры и функции почек.

Отметим, что важность связывания с биомембраной выявлена не только для интегральных белков, но и продемонстрирована в ряде случаев для периферических белков, например, пируватоксидазы — периферического фермента, катализирующего окисление пирувата до уксусной кислоты и восстановление убихинона. Указанный фермент циркулирует в организме и связывается с плазматической мембраной лишь в присутствии субстрата и кофактора; при этом в молекуле белка формируется С-концевой липидсвязывающий домен. Показано, что мутантная форма пируватоксидазы, лишенная последних 24 аминокислотных остатков, полностью неактивна in vivo из-за неспособности связываться с мембраной.

Таким образом, биологическая роль различных мембранных ферментов может в значительной степени определяться их способностью к связыванию с мембраной. Во-первых, связывание с биомембраной обеспечивает локализацию (концентрирование) ферментов в определенной части клетки и/или в той области мембраны, где концентрируется субстрат. Например, ацетилхолинэстераза фиксируется в постсинаптической мембране, где велика концентрация ацетилхолина. Во-вторых, адсорбция ферментов на мембране создает возможность для сопряжения процессов катализа и трансмембранного переноса. Так, при функционировании мембраносвязанных ферментов, участвующих в гидролизе крахмала и белков, вблизи клеточной мембраны создается локально высокая концентрация растворимых молекул продукта, что способствует их эффективному поглощению клеткой. В-третьих, для многих ферментов при связывании с мембраной обеспечивается доступность водонерастворимых субстратов. Это могут быть интегральные ферменты, участвующие в процессинге мембранных белков, а также периферические ферменты: фосфолипазы, протеинкиназа С, пируватоксидаза и др. Наконец, при связывании формируется оптимальное микроокружение, обеспечивающее нативную конформацию и каталитическую активность мембранных ферментов.

  1. Изучение активности мембранных ферментов

Каталитическая активность мембранных ферментов часто очень сильно зависит от используемого детергента или фосфолипида. Обычно активность мембранных ферментов измеряют в смеси, содержащей детергент и экзогенно добавленный фосфолипид. Кроме того, ферментный препарат нередко содержит соочищаемые с ним эндогенные липиды. В таких условиях физическое состояние фермента, в частности степень его агрегации, оказывается весьма неопределённым и скорее всего гетерогенным. Часто в одной и той же среде, компоненты которой смешивались в разной последовательности, получают совершенно разные ферментативные активности. Такая зависимость от предыстории препарата являет собой пример гистерезиса и весьма типична для мембранных ферментов. По существу фермент «застревает» в метастабильном состоянии и не может приобрести наиболее стабильную «рабочую конформацию».

После того как мембранный фермент очищен, для изучения его каталитической активности желательно, а часто и необходимо реконструировать его с фосфолипидами. Изучение очищенных и реконструированных ферментов даёт большие преимущества. В частности, в такой системе не протекают различные конкурирующие реакции, присущие биомембранам. Использование реконструированной системы позволяет не только охарактеризовать изолированную систему, но и определить минимальное число компонентов, необходимых для проявления тех или иных биохимических активностей.

Для встраивания мембранного белка в липидную везикулу, прежде всего, необходимо избавиться от находящегося в препарате белка детергента, который, если он присутствует в значительных количествах, дестабилизирует фосфолипидный бислой. Обычно детергент удаляют уже из смеси белка с фосфолипидом, но в некоторых случаях белок очищают от детергента до начала реконструкции. Для удаления детергента используют гель-фильтрацию, диализ или адсорбцию на поверхности шариков из полистирола. Последний способ применяют в первую очередь для удаления тритона Х-100.

Методы реконструкции можно разделить на две группы.

  1. Процедуры, при которых белок предварительно очищают от детергента, а затем проводят реконструкцию.

  2. Процедуры, в которых белки и фосфолипиды смешивают в присутствии детергента, а затем удаляют детергент до образования протеолипосом. Выбранный фосфолипид должен быть способен к формированию стабильных бислоев.

Реконструкция без избытка детергента

  1. Инкубация белка с заранее полученными везикулами.

Этот способ используется для реконструкции не пронизывающих бислой белков с ограниченной гидрофобной поверхностью, например цитохрома b5 и в-гидроксибутиратдегидрогеназы.

  1. Реконструкция с участием амфифильных катализаторов.

Добавление в белково-фосфолипидную смесь амфифильных веществ в низких концентрациях облегчает встраивание в везикулы таких мембранных ферментов, как бактериородопсин или цитохром с-оксидаза. В качестве амфифильных веществ использовали холестерол, короткоцепочесные фосфатидилхолины и жирные кислоты. Данный способ хорош тем, что в нём не используют какие-либо грубые процедуры, в том числе обработка избытком детергентов, однако пока он мало распространён.

  1. Замораживание – оттаивание/обработка ультразвуком.

Эта методика, однако, применяется нечасто из-за опасности денатурации белка. Иногда для облегчения реконструкции используют простую обработку ультразвуком. Вероятнее всего, белок вначале включается в маленькие везикулы, обладающие высокой кривизной. Замораживание – оттаивание, возможно, нужно для слияния мелких протеолипосом в более однородные по размерам.

Реконструкция с использованием детергентов

В настоящее время для реконструкции используют методики, состоящие в солюбилизации смеси белка и фосфолипида детергентом и последующем удалении детергента. После его удаления белок и фосфолипид спонтанно формируют однослойные везикулы, вполне пригодные для энзимологических исследований. Обычно выбирают детергенты с высокой критической концентрацией мицеллообразования и малыми размерами мицелл, с тем, чтобы их можно было легко удалить диализом или гель-фильтрацией. Чаще всего используют холат натрия и октилглюкозид. В качестве примеров можно привести встраивание цитохром с-оксидазы и Na+/K+-ATPазы.

С помощью такой методики можно ввести в везикулы отличные от фосфолипидов вещества, например холестерол или убихинон. В ряде случаев возникает необходимость в достаточно быстром удалении детергента, особенно если белок нестабилен при его избытке. Тогда применяют гель-фильтрационную хроматографию, тоже позволяющую эффективно отделить белково-липидные везикулы от детергента (например, при реконструкции глицеро-3-фосфатацилтрансферазы и фосфатидилинозитолсинтазы)

Ещё более быстрым является метод разведения, когда белково-липидно-детергентную смесь разводят до концентрации детергента много меньшей, чем критическая концентрация мицеллообразования. При этом спонтанно образуются белково-фосфолипидные везикулы, которые можно отделить от детергента центрифугированием.

Характеристики

Тип файла
Документ
Размер
166,09 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6518
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее