10366 (600376), страница 4
Текст из файла (страница 4)
Важную роль в функционировании нейронов играет совместное фосфорилирование протеинкиназами А II типа и В II типа высокомолекулярного белка МАР-2, сконцентрированного в дендритах нейронов. Как упоминалось, именно здесь локализована Р-субъединица А-киназы II типа, которая обладает высоким сродством к МАР-2 и является своеобразным "якорем" цАМФ-зависимой фосфорилирующей активности в дендритах. МАР-2 участвует в сборке микротрубочек: фосфорилирование этого белка киназами В и АII типа контролирует процесс сборки и, таким образом, может модулировать функциональную активность нейронов. МАР-2 фосфорилирует также протеинкиназа С; роль этого процесса в функционировании нейронов выясняется.
Предполагается, что комплекс МАР-2 – Р-субъединица А-киназы II типа может изменять проницаемость мембран нейронов для Na+ и К+ без фосфорилирования К-субъединицей киназы. Возможно, сигналом для такого изменения мембранной проницаемости является взаимодействие цАМФ с Р-субъединицей протеинкиназы II типа, ассоциированной с МАР-2. Сигнал распространяется по цитоскелету к мембране нейронов с очень высокой частотой; для поддержания такой частоты достаточное время требуется энергия АТФ.
Синергизм в действии протеинкиназ В и А в нервной ткани проявляется также при потенцировании цАМФ-индуцируемых входящих токов внутриклеточными ионами Са. Повышение внутриклеточной концентрации цАМФ в нейронах виноградной улитки приводит к деполяризации мембраны, а в условиях фиксации потенциала – к возникновению ионного тока по каналам пассивной проницаемости. Увеличение внутриклеточной концентрации Са+ приводит к значительному увеличению амплитуды и длительности цАМФ-тока.
Можно полагать, что синергическое действие Са+ и иАМФ на соответствующие ионные каналы связано с наличием у последних двух различных участков фосфорилирования; для В- и А-киназ. Возникающие под влиянием КМ-зависимого фосфорилирования изменения в структуре канала обеспечивают повышение доступности соответствующего участка фосфорилирования для протеинкиназы А. Напротив, при изучении влияния внутриклеточного Са+ на Са-зависимые калиевые каналы взаимодействие двух систем вторичных посредников отличается тем, что цАМФ выступает в роли агента, повышающего чувствительность канала к внутриклеточному Са+ и КМ. Можно полагать, что регуляция числа каналов и их активности с помощью протеинфосфорилирования связана с изменениями в процессах поведения и обучения.
В последнее время появились данные о регуляции протеинкиназной и протеинфосфатазной активности с помощью Са-связывающего белка S-100. S-100 активирует фосфопротеинфосфатазы мозга, а также модулирует активность ядерных и цитоплазматических протеинкиназ этой ткани, в частности К-субъединицы протеинкиназы A. S-100 ингибирует фосфорилирование ряда субстратов в клетках мозга; кальмодулин активирует фосфорилирование этих же белков. Возможно, S-100 и кальмодулин действуют в мозге как антагонисты. Во всяком случае, в нервной ткани реализуется еще один путь Са-зависимого фосфорилирования-дефосфорилирования, независимый от КМ-стимулируемого процесса. S-100-стимулируемое фосфорилирование-дефосфорилирование может принимать участие в регуляции ряда функций нервных клеток.
Необходимо отметить участие В-киназы II типа наряду с протеинкиназой А в фосфорилировании и соответствующей активации т! фозингидроксилазы, что приводит к ускорению синтеза катехоламинов в ответ на нервный импульс и нейромедиаторный сигнал. Установлено, что тршггофангидроксилаза – фермент, катализирующий первую реакцию биосинтеза серотонина, также фосфорилируется протеинкиназой В II типа. Фосфорилирование триптофангидроксилазы приводит к двукратному увеличению ее активности. Таким образом, Са-КМ-зависимое фосфорилирование ферментов, принимающих участие в синтезе нейромедиаторов и гормонов, является одним из ключевых аспектов участия В-киназ в нейрогуморальной регуляции.
Отметим, что на основании результатов многочисленных исследований установлена тесная взаимосвязь между процессами, регулируемыми Са+, цАМФ и 2–5А. Это дает основание для их рассмотрения в рамках единой регуляторной системы. Взаимодействие Са+, цАМФ и 2–5А обусловлено двумя типами регуляторных связей. Во-первых, ряд жизненно важных для клеток реакций контролируется этими вторичными посредниками одновременно. Так, например, активность киназы фосфорилазы гликогена зависит от цАМФ и Са+, скорость синтеза белка полирибосомами контролируется с помощью фосфорилирования А-киназой и уровнем 2–5А и т.д. Во-вторых, увеличение внутриклеточного уровня одного из посредников приводит к изменению содержания других. Так, возрастание уровня пАМФ обусловливает индукцию олигосинтетазы и ингибирование 2'-фосфодиэстеразы, что приводит к увеличению концентрации 2–5А. В свою очередь, Са* и 2–5А активируют фосфодиэстеразу цАМФ и тем самым вызывают падение уровня цАМФ. Кроме того, увеличение внутриклеточного уровня цАМФ приводит к выбросу Са+ из митохондрий в цитоплазму и высвобождению кальмодулина из примембранных компартментов.
4. Са+-фосфолипид-зависимое протеинфосфорилирование
4.1 Образование диацилглицерина и инозитолфосфатов
Эта группа вторичных посредников образуется при активации фосфолипазы С, локализованной в наружной клеточной мембране. Для ее активации необходимо связывание ряда гормонов и нейромедиаторов, известных своей способностью увеличивать концентрацию Са+ в цитозоле, с соответствующими рецепторами. К числу агонистов, стимулирующих фосфолипазу С, относят ацетилхолин, норадреналин, гистамин, серотонин, а также ряд гормонов белковой природы и ростовых факторов. Сопряжение фосфолипазы С с рецепторами достаточно специфично; например, из 4 известных основных типов адренорецепторов характерно только для c-типа, а из 2 типов холинорецепторов – только для мускарин-чувствительного, но не для никотинчувствительного. Так же, как и в случае аденилатциклазы, для сопряжения рецептии и активации фосфолипазы С необходимы G-белки, иногда называемые Gp. Установлено, что белок типа Gj также может непосредственно принимать участие в регуляции фосфолипазы С, а Gs – опосредовано, путем цАМФ-зависимого ингибирования фосфолипазы С.
Субстратом фосфолипазы С является фосфатидилинозитол-дифосфат – относительно редкий фосфолипид мембран.
Фермент расщепляет фосфатидилинозитолдифосфат на липидный компонент диацилглицерин, который остается в мембране, и водорастворимый инозитолтрифосфат. Если в системе цАМФ трансмембранный перенос информации происходит с образованием одного вторичного посредника, то в фосфоино-зитидной системе идет раздвоение пути передачи сигнала, так как в результате образуются два различных вторичных посредника: диацилглицерин и инозитолтрифосфат. Они действуют в клетке согласованно и активируют соответствующие пулы протеинкиназ.
Инозитолтрифосфат стимулирует высвобождение кальция из эндоплазматического ретикулума, при этом активируется семейство Са-КМ-зависимых протеинкиназ. Его концентрация, необходимая для достижения максимальной скорости высвобождения Са+ из депо ретикулума в нервной ткани, существенно ниже по сравнению с другими тканями. Таким образом, чувствительность эндоплазматического ретикулума к инозитолтрифосфату в клетках нервной системы может быть наиболее высокой.
Инозитолтрифосфат, очевидно, не единственный из инозитолтрифосфатов, выступающих в роли вторичного посредника. Образуемый в результате фосфорилирования инозитолтрифосфата инозитолтетрафосфат также участвует в регуляции внутриклеточной концентрации Са+. Эта регуляция осуществляется, вероятно, влиянием инозитолтетрафосфата на поступление внеклеточного Са+ в цитоплазму. Поступление Са" в клетку в этом случае происходит не через рецепторзависимые Са-каналы, а каким-то иным, пока неизвестным способом.
Диацилглицерин служит источником арахидоновой кислоты, активирующей гуанилатциклазу. Этот путь регуляции имеет особое значение для реализации эффектов холинергической импульсации и функции мускаринчувствительных холинорецепторов и Н1 – рецепторов гистамина, для которых роль цГМФ как вторичного посредника общепризнанна. Следовательно, в системах вторичных посредников – цГМФ и фосфоинозитидной – существует функциональная взаимосвязь через стадию образования арахидоната, обеспечивающая интегральный характер транссинаптической регуляции биохимических процессов в клетке.
Из арахидоновой кислоты образуются простаглавдины, тромбоксан и, кроме того, под действием соответствующей киназы диацилглицерин превращается в фосфатидную кислоту. Предполагается, что фосфатидная кислота обладает Са-ионофорными свойствами. Так, фосфатидная кислота накапливается в мембранах клеток при действии Са-агонистов. По такому механизму, очевидно, происходит инактивация электровозбудимых Са-каналов нейронов при действии дофамина. Взаимодействуя с собственным мембранным рецептором, дофамин в нейронах большого прудовика через G-белок активирует фосфолипазу С. Образовавшаяся из диацилглицерина фосфатидная кислота индуцирует поступление в клетку внешнего кальция и накопление его в примембранном слое цитоплазмы. Результатом локального повышения концентрации Са+ является инактивация электровозбудимьгх Са-каналов. Таким образом, система метаболизма фосфатидилинозитидов может регулировать внутриклеточную концентрацию Са+ как посредством увеличения потока Са+ через плазматическую мембрану, так и за счет выхода Са+ из внутриклеточных депо.
Наконец, диацилглицерин активирует также протеинкина-зу, связанную с плазмалеммой, – фосфолипидзависимый, Са-активируемый фермент – протеинкиназу С.
4.2 Протеинкиназа С
Уже отмечалось, что протеинкиназы, как и сопряженные с ними G-белки, имеют различную преимущественную локализацию в клетках нервной ткани. Так, аденилатциклаза и протеинкиназа С присутствуют в высоких концентрациях в мозжечке, но С-киназа локализована в клетках Пуркинье, в то время как аденилатциклаза – в гранулярных клетках. Таким образом, разные типы клеток мозга адаптированы к сигналам, активирующим синтез различных вторичные посредников: цАМФ, цГМФ, инозитолтрифосфата и дианилглицерина. В мозжечке рецепторов фосфоинозитидной системы примерно в 500 раз больше, чем в периферической нервной ткани.
Во многих отделах мозга, включая мозжечок, рецепторы фосфолипазы С и С-киназа имеют одинаковую локализацию и функционируют синергично. Однако в некоторых отделах, таких, как грудной отдел спинного мозга, рецепторы и киназа разобщены; две ветви этого внутриклеточного сигнального пути не составляют там эквивалентную пару. Поэтому в ряде случаев диацилглицерин формируется и активирует С-киназу без образования инозитолтрифосфата. В этих случаях, очевидно, диацилглицерин образуется уже не из фосфатидилинозитолдифосфата, а из монофосфорилированного мембранного липида – фосфатидилинозитола Таким образом, в нервной ткани имеется еще один вариант активации протеинкиназы С.
Протеинкиназа С обнаружена в разных тканях млекопитающих и лишена строгой тканевой и видовой специфичности. Однако в мозге ее концентрация является наибольшей. Субклеточное распределение протеинкиназы С неодинаково в разных тканях и органах: фермент преимущественно локализован в ци-тозоле клеток сердца и в мембранной фракции клеток мозга. Протеинкиназа С мозга – мономер с Мг = 80–87 кД, состоящий из двух доменов: регуляторного, имеющего участки связывания для диацилглицерина и фосфолипидов, и каталитического. Домены разделяют участок полипептидной цепи, чувствительный к протеолитической атаке.
Наибольший активирующий эффект на протеинкиназу С оказывают диацилглицерины и в меньшей мере фосфатидилянозитол, фосфатидилсерин и фосфатидная кислота. Диацилглицерины увеличивают сродство протеинкиназы С к фосфолипидам. При этом протеинкиназа С становится чувствительной к физиологическим концентрациям Са+ в клетке. Диацилглицерин быстро образуется в ответ на сигнал-рецепторное взаимодействие и быстро разрушается, что в конечном итоге и определяет его свойства как вторичного посредника.
Известно, что сродство С-киназы к плазматическим мембранам увеличивается во время активации. Для транслокации киназы необходим Са+. Связывание С-киназы с мембранами обусловлено координационным взаимодействием 4 карбоксильных групп молекул фосфатидилсерина с комплексом Са+-фермент.
Таким образом, индуцированное инозитолтрифосфатом увеличение внутриклеточной концентрации Са+ может активировать С-киназу при встраивании ее в мембраны. Активированная и локализованная на наружной мембране С-киназа обусловливает фосфорилирование белковых компонентов ионных каналов, изменяя тем самым их проницаемость.
Как недавно установлено, Са+ и фосфолипиды не всегда необходимы для активации протеинкиназы С. Так, ненасыщенные жирные кислоты могут активировать фермент независимо от Са+ и фосфолипидов. В составе изоферментов протеинкиназы С обнаружена также Са-независимая, но фосфолипидзависимая форма фермента.
Протеинкиназа С подвергается аугофосфорилированию в присутствии Са+ и фосфолипидов. Физиологическое значение этого процесса состоит, вероятно, в повышении активности киназы. Установлена также активация протеинкиназы С ограниченным протеолизом под действием мембраносвязанной Са-активируемой эндогенной протеазы. Полученные фрагменты теряют сродство к мембранам независимо от присутствия Са+ и диацилглицерина. Такие рас* творимые фрагменты С-киназы, активность которых не зависит от Са* и фосфолипидов, появляются при взаимодействии форболовых эфиров с некоторыми клетками. Ингибиторы Са-зависимых протеиназ блокируют это действие форболовых эфиров. Очевидно, при стимуляции рецепторов фосфолипазы С увеличение внутриклеточной концентрации ионизированного Са+ под действием инозитолтрифосфата приводит наряду с транслокацией С-киназы на мембраны также к активации мембраносвязанных, Са-стимулируемых протеиназ и появлению независимой от Са+ и фосфолипидов активности С-киназы.
Таким образом, фосфорилирующая способность С-киназы может быть сохранена достаточно долго после прекращения действия вторичных посредников, что наводит на мысль об участии этого процесса в долговременном хранении информации в нейронах мозга – органа с наибольшей активностью протеинкиназы С.
Сильными ингибиторами протеинкиназы С являются такие фармакологические агенты, как психотропные препараты фенотиазинового ряда и местные анестетики. Очевидно, фармакологическое действие этих препаратов, которое раньше связывали с ингибированием кальмодулина, обусловлено их липофильной природой и способностью конкурентно связываться с фосфолипидами, тем самым препятствуя активации протеинкиназы С. Полиамины также способны ингибировать протеинкина-зу С, что связано с избыточным положительным зарядом этих соединений. В мозге недавно обнаружен термостабильный ингибитор С-киназы: димер белковых субъединиц с Мг = 19 кД. Кальмодулин и другие Са-связываюшие белки также ингибируют активность фермента, вероятно, за счет влияния на механизм активации С-киназы.
В клетках мозга найдено несколько субстратов для протеинкиназы С. Отметим среди них основной белок миелина, 87 кД-белок и В-50-белок. Степень фосфорилирования основного белка миелина протеинкиназой С, присутствующей в миелине, увеличивается in vivo при К+-деполяризации мембраны. Протеинкиназы В не оказывают такого действия.
Установлено, что активация С-киназы форболовыми эфирами приводит к увеличению секреции нейромедиаторов, вызванной пресинаптическими потенциалами действия. Полагают, что способность С-киназы увеличивать секрецию связана именно с фосфорилированием упомянутого выше 87 кД-белка. Этот белок локализован преимущественно в синаптосомах – как в мембранной, так и цитозольной фракциях. Вероятно, его фосфорилирование С-киназой в окончаниях нейронов обусловливает регуляцию Са-зависимой секреции нейромедиаторов.
В-50-белок ассоциирован с пресинаптическими мембранами нейронов мозга. Как недавно установлено, этот белок проявляет активность фосфатидилинознтол-4-фосфат киназы – фермента, участвующего в синтезе фосфатидилинози-толдифосфата. Таким образом, передача сигнала через систему фосфатидилинозитола в мозге может регулироваться с помощью фосфорилирования В-50-белка протеинкиназой С.
Протеинкиназа С, по-видимому, регулирует как хемозависимые так и электрозависимые Са-каналы в нервных клетках. Так, искусственные аналоги диацилглицерина – форболовые эфиры – в задних корешках спинного мозга, блокируют хемозависимые Са-каналы в концентрациях, при которых эти соединения активируют протеинкиназу С. Установлено также, что внутриклеточная инъекция протеинкиназы С увеличивает амплитуду электрозависимого Са-тока и уменьшает Са-активируемый калиевый ток в нейронах моллюска аплизии. При этом, по имеющимся данным, С-киназа преимущественно фосфорилирует регуляторные компоненты мембран, сопряженные с каналами, а не пептиды, формирующие собственно трансмембранные каналы. Таким образом, приведенные данные о влиянии на секрецию нейромедиаторов и трансмембранные потоки ионов свидетельствуют о непосредственном участии С-киназы в важнейших процессах нервной ткани.
Оценивая место протеинкиназы в системах регуляции, отметим, что существуют два варианта взаимодействия между системами вторичных посредников, определяемые как состоянием рецепторов, так и распределением в разных тканях, природой и условиями для фосфорилирования отдельных белков-мишеней: синергизм и антагонизм. Протеинкиназа С, по всей видимости, является тем звеном, которое путем тонкой подстройки сопрягающего аппарата связывает аденилатциклазную и фосфолипазную системы передачи и усиления сигнала.