4710 (600187), страница 3
Текст из файла (страница 3)
x6 -0,029481 0,347949 -0,084728 0,9462
Дисперсионный анализ
Источник Сумма Число Среднее F- р-
квадратов значений квадратов критерий значение
Модель 43,4951 6 7,24919 1,92 0,4954
Остаток 3,78362 1 3,78362
--------------------------------------- --------------------------------------
Общее кол. 47,2788 7
R2 (коэффициент детерминации) = 91,9972 %
R2 (приспособленный к числу значений) = 43,9804 %
Стандартная ошибка оценки = 1,94515
Средняя абсолютная ошибка = 0,508709
Уравнение регрессионной модели:
y1 = 99,1558 - 0,0999052*x1 - 0,00531697*x2 - 0,0536492*x3 + 0,000403861*x4 –
- 0,00000996529*x5 - 0,029481*x6
у2 – средняя продолжительность жизни мужчин
Стандартная T р-
Параметр Оценка ошибка критерий значение
Постоянная 91,8641 3,78199 24,2899 0,0262
x1 -0,0967528 0,0228772 -4,22922 0,1478
x2 -0,0309012 0,0182433 -1,69384 0,3395
x3 -0,0844186 0,0077256 -10,9271 0,0581
x4 0,000504772 0,0000612807 8,23705 0,0769
x5 -0,0000160501 0,00000168666 -9,51586 0,0667
x6 0,487637 0,107125 4,55203 0,1377
Дисперсионный анализ
Источник Сумма Число Среднее F- р-
квадратов значений квадратов критерий значение
-----------------------------------------------------------------------------
Модель 98,0564 6 16,3427 45,57 0,1114
Остаток 0,358641 1 0,358641
-----------------------------------------------------------------------------
Общее кол. 98,415 7
R2 (коэффициент детерминации) = 99,6356 %
R2 (приспособленный к числу значений) = 97,4491 %
Стандартная ошибка оценки = 0,598866
Средняя абсолютная ошибка = 0,156619
Уравнение регрессионной модели:
y2 = 91,8641 - 0,0967528*x1 - 0,0309012*x2 - 0,0844186*x3 ++ 0,000504772*x4 - 0,0000160501*x5 + 0,487637*x6
у3 – рождаемость на 1000 человек
Стандартная T р-
Параметр Оценка ошибка критерий значение
-----------------------------------------------------------------------------
Постоянная 11,1768 1,74903 6,39032 0,0988
x2 -0,191681 0,00843686 -22,7195 0,0280
x1 0,0440065 0,0105799 4,15946 0,1502
x3 0,0361766 0,0035728 10,1255 0,0627
x4 0,0000281208 0,00002834 0,992265 0,5025
x5 -0,00000402137 7,80019E-7 -5,15548 0,1220
x6 0,606653 0,0495414 12,2454 0,0519
Дисперсионный анализ
-----------------------------------------------------------------------------
Источник Сумма Число Среднее F- р-
квадратов значений квадратов критерий значение
-----------------------------------------------------------------------------
Модель 505,498 6 84,2497 1098,39 0,0228
Остаток 0,0767031 1 0,0767031
-----------------------------------------------------------------------------
Общее кол. 505,575 7
R2 (коэффициент детерминации) = 99,9848 %
R2 (приспособленный к числу значений) = 99,8938 %
Стандартная ошибка оценки = 0,276953
Средняя абсолютная ошибка = 0,0724306
Уравнение регрессионной модели:
y3 = 11,1768 - 0,191681*x2 + 0,0440065*x1 + 0,0361766*x3 +
+ 0,0000281208*x4 - 0,00000402137*x5 + 0,606653*x6
у4 – Смертность на 1000 человек
Стандартная T р-
Параметр Оценка ошибка критерий значение
-----------------------------------------------------------------------------
Постоянная 5,46707 0,830794 6,58054 0,0960
x2 0,0787761 0,00400754 19,657 0,0324
x1 0,0111729 0,00502547 2,22325 0,2691
x3 -0,0155568 0,00169709 -9,16674 0,0692
x4 0,000232669 0,0000134616 17,2839 0,0368
x5 -0,0000055904 3,70512E-7 -15,0883 0,0421
x6 -0,0626762 0,0235323 -2,66341 0,2287
-----------------------------------------------------------------------------
Дисперсионный анализ
-----------------------------------------------------------------------------
Источник Сумма Число Среднее F- р-
квадратов значений квадратов критерий значение
-----------------------------------------------------------------------------
Модель 47,8914 6 7,98191 461,21 0,0352
Остаток 0,0173064 1 0,0173064
-----------------------------------------------------------------------------
Общее кол. 47,9088 7
R2 (коэффициент детерминации) = 99,9639 %
R2 (приспособленный к числу значений) = 99,7471 %
Стандартная ошибка оценки = 0,131554
Средняя абсолютная ошибка = 0,0344048
Уравнение регрессионной модели:
y4 = 5,46707 + 0,0787761*x2 + 0,0111729*x1 - 0,0155568*x3 + 0,000232669*x4 - 0,0000055904*x5 - 0,0626762*x6
у5 – коэффициент естественного прироста на 1000 человек
Стандартная T р-
Параметр Оценка ошибка критерий значение
-----------------------------------------------------------------------------
Постоянная 6,11292 2,52953 2,41662 0,2498
x2 -0,269378 0,0122018 -22,0769 0,0288
x1 0,0294256 0,0153011 1,9231 0,3053
x3 0,0521545 0,00516716 10,0935 0,0629
x4 -0,000202351 0,0000409867 -4,93699 0,1272
x5 0,00000154164 0,0000011281 1,36658 0,4022
x6 0,660049 0,0716492 9,21223 0,0688
-----------------------------------------------------------------------------
Дисперсионный анализ
-----------------------------------------------------------------------------
Источник Сумма Число Среднее F- р-
квадратов значений квадратов критерий значение
-----------------------------------------------------------------------------
Модель 838,498 6 139,75 871,07 0,0256
Остаток 0,160435 1 0,160435
-----------------------------------------------------------------------------
Общее кол. 838,659 7
R2 (коэффициент детерминации) = 99,9809 %
R2 (приспособленный к числу значений) = 99,8661 %
Стандартная ошибка оценки = 0,400543
Средняя абсолютная ошибка = 0,104753
Уравнение приспособленной модели:
y5 = 6,11292 - 0,269378*x2 + 0,0294256*x1 + 0,0521545*x3 – 0,000202351*x4 + 0,00000154164*x5 + 0,660049*x6
у6 – уровень рождаемости
Стандартная T р-
Параметр Оценка ошибка критерий значение
-----------------------------------------------------------------------------
Постоянная 0,352785 0,161948 2,17838 0,2740
x2 -0,0193954 0,000781198 -24,8278 0,0256
x1 0,0121752 0,000979625 12,4284 0,0511
x3 0,00371783 0,000330818 11,2383 0,0565
x4 0,00000811489 0,0000026241 3,09245 0,1991
x5 -6,31109E-7 7,22246E-8 -8,73814 0,0725
x6 0,0425779 0,00458721 9,28189 0,0683
-----------------------------------------------------------------------------
Дисперсионный анализ
-----------------------------------------------------------------------------
Источник Сумма Число Среднее F- р-
квадратов значений квадратов критерий значение
-----------------------------------------------------------------------------
Модель 2,71434 6 0,45239 687,92 0,0288
Остаток 0,000657617 1 0,000657617
-----------------------------------------------------------------------------
Общее кол. 2,715 7
R2 (коэффициент детерминации) = 99,9758 %
R2 (приспособленный к числу значений) = 99,8304 %
Стандартная ошибка оценки = 0,025644
Средняя абсолютная ошибка = 0,00670659
Уравнение регрессионной модели:
y6 = 0,352785 - 0,0193954*x2 + 0,0121752*x1 + 0,00371783*x3 + 0,00000811489*x4 - 6,31109E-7*x5 + 0,0425779*x6
у7 – уровень детской смертности
Стандартная T р-
Параметр Оценка ошибка критерий значение
-----------------------------------------------------------------------------
Постоянная 40,8464 40,1822 1,01653 0,4948
x2 -0,461165 0,193829 -2,37924 0,2533
x1 0,0250685 0,243062 0,103136 0,9346
x3 0,166108 0,0820816 2,0237 0,2922
x4 -0,000308391 0,000651084 -0,473657 0,7184
x5 0,00000562441 0,0000179202 0,31386 0,8064
x6 -0,582212 1,13816 -0,511536 0,6990
-----------------------------------------------------------------------------
Дисперсионный анализ
-----------------------------------------------------------------------------
Источник Сумма Число Среднее F- р-
квадратов значений квадратов критерий значение
-----------------------------------------------------------------------------
Модель 1403,02 6 233,836 5,78 0,3039
Остаток 40,4843 1 40,4843
-----------------------------------------------------------------------------
Общее кол. 1443,5 7
R2 (коэффициент детерминации) = 97,1954 %
R2 (приспособленный к числу значений) = 80,3679 %
Стандартная ошибка оценки = 6,36272
Средняя абсолютная ошибка = 1,66402
Уравнение регрессионной модели:
y7 = 40,8464 - 0,461165*x2 + 0,0250685*x1 + 0,166108*x3 – 0,000308391*x4 + 0,00000562441*x5 - 0,582212*x6
у8 – смертность детей до 5 лет на 1000 рожденных
Стандартная T р-
Параметр Оценка ошибка критерий значение
-----------------------------------------------------------------------------
Постоянная 366,892 81,0421 4,52718 0,1384
x2 -0,735043 0,390927 -1,88026 0,3112
x1 -1,49102 0,490223 -3,04151 0,2022
x3 0,248001 0,165548 1,49807 0,3747
x4 -0,00223802 0,00131315 -1,70432 0,3378
x5 0,0000643646 0,0000361426 1,78085 0,3257
x6 -5,0967 2,29553 -2,22027 0,2694
-----------------------------------------------------------------------------
Дисперсионный анализ
-----------------------------------------------------------------------------
Источник Сумма Число Среднее F- р-
квадратов значений квадратов критерий значение
-----------------------------------------------------------------------------
Модель 6645,32 6 1107,55 6,73 0,2830
Остаток 164,68 1 164,68
-----------------------------------------------------------------------------
Общее кол. 6810,0 7
R2 (коэффициент детерминации) = 97,5818 %
R2 (приспособленный к числу значений) = 83,0725 %
Стандартная ошибка оценки = 12,8328
Средняя абсолютная ошибка = 3,35611
Уравнение регрессионной модели:
y8 = 366,892 - 0,735043*x2 - 1,49102*x1 + 0,248001*x3 - 0,00223802*x4 + 0,0000643646*x5 - 5,0967*x6
Результаты анализа многократной регрессии:
Переменные, ранжированные в порядке увеличения р-значения
| №п/п | Переменная | р-значение |
| 1 | у3 | 0,0228 |
| 2 | у5 | 0,0256 |
| 3 | у6 | 0,0288 |
| 4 | у4 | 0,0352 |
| 5 | у2 | 0,1114 |
| 6 | у8 | 0,2830 |
| 7 | у7 | 0,3039 |
| 8 | у1 | 0,4954 |
Т.к. р-значение переменной у3 наименьшее, то переменная у3 (рождаемость на 1000 человек) является наиболее зависимой от 6 независимых переменных.
Т.к. р-значение переменных у3, у4, у5, у6 меньше 0,05, то модели многократной регрессии, соответствующие этим переменным можно считать достаточно значимыми.
2.4 Анализ простой регрессии
В данном разделе приведены результаты приспособления моделей для описания отношений между переменными и уравнения регрессионных моделей.
R2 (Коэффициент детерминации) показывает, на сколько процентов модель объясняет зависимость между переменными.
Коэффициент корреляции указывает на силу отношений между переменными.
F-критерий показывает уровень адекватности модели. При значении F- критерия > 3 модель считается адекватной.
р-значение показывает уровень значимости модели или ее компонентов. Если р-значение меньше чем 0.05, то имеется статистически существенная зависимость между переменными с 95 % уровнем доверительности.
Т-критерий показывает уровень достоверности модели. Модель считается достоверной при значении Т-критерии >3.
Ниже приведены наиболее значимые модели для описания отношений между переменными.
у1– средняя продолжительность жизни женщин
Обратная-X модель: Y = a + b/X















