165670 (599145), страница 2
Текст из файла (страница 2)
В каждом из этих наборов суммарные характеристики микросостояний, т.е. квантовые числа ML и MS, определяющие проекции и орбитального, и спинового моментов импульса оболочки, последовательно пробегают все значения. В итоге микросостояния оказываются просто отдельными подсостояниями в таких наборах, каждый из которых характеризуется единым значением модуля вектора и независимо единым значением модуля вектора
. Каждый такой набор микросостояний принадлежит к одному определённому коллективному электронному уровню энергии. Такой коллективный уровень называется терм.
Каждая терм характеризуется двумя суммарными квантовыми числами L и S, и на данной стадии анализа объединяет серию микросостояний оболочки атома. Кратность вырождения терма определяется числом принадлежащих ему микросостояний и равна произведению (2L+1)(2S+1).
Номенклатура термов учитывает, прежде всего, два признака:
во-первых, величину орбитального момента импульса:
По величине суммарного L термы называются:
во-вторых, величину суммарного спина (мультиплетность)
По величине суммарного спина S вводится мультиплетность:
Символ атомного терма Рассел-Саундерса имеет вид
По этим признакам электронная конфигурация порождает 15 микросостояний электронной оболочки, которые группируются в три терма:
Пример 2: Первая возбужденная конфигурация атома Be(1s22s12p1). Микросостояния и термы.
Микросостояния электронной оболочки атома бериллия в основной и двух последующих возбуждённых конфигурациях: (2s2 ), (2s12p1), (2p2)
АО | 2s | 2p | ML | MS | |||||||
ml | 0 | +1 | 0 | -1 | |||||||
Конфигурация | |||||||||||
2s2 (основ) | | 0 | 0 | ||||||||
А | | | +1 | +1 | |||||||
Б | | | 0 | +1 | |||||||
В | | | -1 | +1 | |||||||
Г | | | +1 | 0 | |||||||
Д | | | 0 | 0 | |||||||
2s12p1(1-я возб.) | Е | | | -1 | 0 | ||||||
Ж | | | +1 | 0 | |||||||
З | | | 0 | 0 | |||||||
И | | | -1 | 0 | |||||||
К | | | +1 | -1 | |||||||
Л | | | 0 | -1 | |||||||
М | | | -1 | -1 | |||||||
| +2 | 0 | |||||||||
2p2 (2-я возб.) | | 0 | 0 | ||||||||
| -2 | 0 |
Первая возбуждённая конфигурация атома содержит следующие микросостояния, которые группируются в два терма:
и
.
ML | MS | +1 | 0 | -1 |
+1 | а | г ж | к | |
0 | б | д з | л | |
-1 | в | е и | м |
Спин-орбитальный эффект приводит к тому, что термы Рассел-Саундерса расщепляются на несколько подуровней, каждый из которых характеризуется внутренним квантовым числом, принимающим значения . Внутреннее квантовое число определяет модуль суммарного момента импульса электронной оболочки. Спин-орбитальный эффект возникает в том случае, когда оба из независимых моментов импульса электронной оболочки атома, орбитальный и спиновый не равны нулю. Если же хотя бы один из них равен нулю, то спин-орбитальный эффект не имеет места.
Низший из атомных термов на шкале энергии (основной) определяется на основе трёх правил Хунда.
1-е правило Хунда: В пределах орбитальной конфигурации основной терм обладает максимальной мультиплетностью.
2-е правило Хунда: Если в пределах орбитальной конфигурации у нескольких термов мультиплетность одинакова, то у основного терма орбитальный момент наибольший и квантовое число L максимальное.
3-е правило Хунда: В пределах конфигурации у низшего терма внутреннее квантовое число J минимальное (нормальный терм), если оболочка атома заполнена менее, чем наполовину, и, число J максимальное при заполнении оболочки более, чем наполовину (обращённый терм).
Символы атомного терма Рассел-Саундерса, учитывающие спин-орбитальный эффект, записываются в виде . Эти термы отражают схему последовательных приближений в учёте различных слагаемых полной энергии коллектива электронов в атомной оболочке.
Резюме: Начальное приближение называют одноэлектронным приближением, а в теории атома его же называют принципом водородоподобия. В одноэлектронном (нулевом) приближении все электроны рассматриваются независимо. Энергия взаимного отталкивания электронов частично учитывается искусственным способом в виде эффекта экранирования ядра «внутренними» электронами.
Эффект экранирования положительно заряженного ядра отрицательно заряженным электронным облаком учитывается тем, что в формуле потенциальной энергии электростатического притяжения одиночного электрона к ядру заряд ядра уменьшается на некоторую функцию экранирования, зависящую и от заряда ядра и от совокупности квантовых чисел.
Полученный модифицированный кулоновский потенциал перестаёт быть простой радиальной функцией обратно пропорционального вида, как это имеет место у точечного заряда. Такой потенциал, введённый в уравнение Шрёдингера для единичного электрона, отдает расщепление вырожденного орбитального уровня. Энергия орбитального (одноэлектронного) уровня зависит уже не только от главного, но и от побочного квантового числа, становясь функцией двух дискретных параметров Enl.
Последовательность орбитальных уровней (уровней АО) удаётся выразить в достаточно универсальной форме в виде правила Клечковского-Маделунга. На этой стадии решение очень сложной многоэлектронной задачи заменено решением задачи о состояниях одного-единственного электрона, и его атомные орбитали рассматриваются как эталонные для всех электронов оболочки. В этом приближении энергетические схемы орбиталей отдельных электронов качественно идентичны, и друг от друга не отличаются. Поэтому для построения первичной схемы распределения электронов в оболочке по одноэлектронным состояниям используется один набор АО единственного электрона.
Нулевое приближение учитывает основную часть электростатической энергии кулоновского притяжения электронов к ядру. Согласно оценкам Томаса-Ферми эта энергия нулевого приближения составляет около 83-85% полной энергии атомной оболочки.
Полная энергия оболочки на этой стадии аддитивна и равна просто сумме одно электронных (орбитальных) энергий.
В первом приближении учитывается энергия межэлектронного электростатического отталкивания. Её основная часть может быть представлена в виде энергии отталкивания электронного облака, сформированного на заполненных атомных орбиталях.
В результате выявляется, что микросостояния, возникающие при размещении электронов на внешних заполненных орбиталях, разделяются на неравноценные группы. Их группировка основана на независимости в оболочке атома суммарных квантовых векторов моментов импульса орбитального и спинового
движений электронов.
При объединении групп микросостояний по признакам этих моментов импульса, формируются термы. В пределах каждого терма квантовое число проекции каждого из независимых моментов ML и MS пробегает весь набор необходимых значений от максимального до минимального: MLmin ML
MLmax и MSmin
MS
MSmax, откуда для них определяются общие суммарные характеристики терма
L = MLmax =| MLmin| и S= MSmax =| MSmin|
Терм оказывается одним из результирующих многоэлектронных уровней оболочки. Характеристиками такого уровня долны быть орбитальная электронная конфигурация и суммарные орбитальное и спиновое квантовые числа. В общем случае терм вырожден. Кратность вырождения это число микросостояний с равной энергией, объединённых в терм. На этой первой стадии приближения она определяется формулой (2L+1) (2S+1).