151742 (598956), страница 2

Файл №598956 151742 (Инфракрасная спектроскопия и спектроскопия кругового дихроизма. Методы определения вторичной структуры белков) 2 страница151742 (598956) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Вклад -структуры в спектр КД белка оказывается зависящим от гораздо большего числа параметров: не только от числа аминокислотных остатков на сегмент, но и от числа нитей в данном участке структуры и их направленности, поэтому его описание простым уравнением, подобным уравнению (1.2.7), невозможно. То же самое касается -изгиба и, особенно, “неупорядоченной” формы, под которой подразумевается все, не относящееся к другим классам. Используемые в данном методе эталонные спектры -структуры, -изгиба и “неупорядоченной” формы являются статистически усредненными по белкам, используемым в качестве базисных.

Процедура анализа спектра КД исследуемого белка подразделяется на два этапа. Первый этап заключается в вычислении эталонных спектров структурных элементов, то есть значений , , и для длин волн в диапазоне 185-240 нм с интервалом в 1 нм, на основе экспериментальных спектров КД пятнадцати эталонных белков со значениями , , , , , известными из рентгеноструктурного анализа. Эталонный спектр, соответствующий -спирали, может быть вычислен непосредственно по формуле (1.2.7). Остальные эталонные спектры находятся из уравнения (1.2.6) с помощью метода наименьших квадратов, причем для уменьшения числа неизвестных в этом уравнении из экспериментального спектра КД каждого эталонного белка исключается вклад -спиральной формы, вычисленный по формуле (1.2.7). Эталонные спектры, вычисленные с помощью данного метода показаны на рисунке 1.2.1.

Когда эталонные спектры найдены, могут быть вычислены коэффициенты , , , в уравнении (1.2.6), примененном к спектру КД исследуемого белка. Для этого также используется метод наименьших квадратов. Он заключается в подборе таких коэффициентов , что

minimum. (1.2.8)

Здесь - экспериментальный, а - рассчитанный по формуле (1.2.6) спектр КД исследуемого белка; - число точек в спектре. Коэффициенты , являющиеся решением уравнения (1.2.8) с учетом условий (1.2.2), представляют собой искомые доли структурных элементов во вторичной структуре белка.

Метод "регуляризации" [4].Подход к анализу спектра КД белка, лежащий в основе предыдущего метода, заключается в определении эталонных спектров, которые, как можно было бы предполагать, полностью характеризуют структурные элементы, образующие вторичную структуру исследуемого белка. Однако, как показывают экспериментальные данные, ни один эталонный спектр не может точно описать все разновидности таких обширных и достаточно неопределенных классов, как -спираль, -структура, -изгиб и др.

Конформация элементов вторичной структуры глобулярных белков значительно отличается от идеальной. Кроме этого, вклад каждого структурного класса в спектр КД белка зависит от очень многих параметров, о которых упоминалось выше. Для учета всего разнообразия типов вторичной структуры белков требуется расширить исходный набор базисных спектров. В результате возникающей при этом избыточности начальных данных обычный метод наименьших квадратов становится неустойчивым к экспериментальной ошибке и приводит к заведомо неверным результатам. Применение метода "эталонных спектров" в том виде, как он описан в предыдущем пункте, к большому базисному набору спектров оказывается, по сути, некорректным.

Эту проблему частично можно разрешить, заменив метод наименьших квадратов моделью, применение которой, на первый взгляд, не вполне оправдано и адекватно, но зато приводит к устойчивому к экспериментальной ошибке результату даже в случае большого числа параметров. Применение такой стабилизирующей модели позволяет подойти к анализу спектров КД с другой стороны. А именно, появляется возможность прямого представления спктра КД исследуемого белка в виде линейной комбинации базисных спектров. Таким образом удается полностью избежать проблемы, связанной с определением эталонных спектров отдельных структурных классов и проводить более гибкий и точный анализ с использованием реальных белковых спектров.

Рассмотрим данный метод более подробно. Предположим, что нам удалось представить спектр КД исследуемого белка в виде линейной комбинации спектров базисных белков, структура которых известна из рентгеноструктурного анализа. Обозначим число этих спектров через (в данном методе =16). Тогда можем записать:

, (1.2.9)

где - спектр КД (эллиптичность) исследуемого белка.

Обозначим долю аминокислот j-ого базисного белка в i-ом структурном классе через , тогда базисные спектры могут быть представлены в виде суперпозиции идеализированных эталонных спектров , соответствующих отдельным структурным классам:

. (1.2.10)

Аналогично для спектра КД исследуемого белка:

. (1.2.11)

Подставляя равенства (1.2.10) и (1.2.11) в уравнение (1.2.9), получим связь искомых коэффициентов с известными (из рентгеноструктурного анализа) коэффициентами :

. (1.2.12)

Проблема заключается в определении коэффициентов в разложении (1.2.9). В подобных задачах широко применяется метод наименьших квадратов, определяющий коэффициенты из следующего условия:

minimum (1.2.13)

с ограничениями

и . (1.2.14)

Здесь и - экспериментальное и рассчитанное по формуле (1.2.9) значения для эллиптичности на длине волны , - число точек в спектре.

Согласно теореме Гаусса-Маркова, среди линейных несмещенных оценок оценка, получаемая с помощью метода наименьших квадратов, является наиболее эффективной в том смысле, что рассчитанные с его помощью коэффициенты наиболее близки к своим истинным значениям. Однако, при больших значениях метод наименьших квадратов становится крайне неустойчивым к экспериментальной ошибке. Повышение стабильности метода за счет снижения величины , в свою очередь, также приводит к заметной ошибке.

Авторы метода [4] нашли выход в использовании вместо метода наименьших квадратов линейной смещенной оценки, определяемой следующим условием:

minimum. (1.2.15)

Эта оценка является смещенной и, следовательно, приводит к систематической ошибке. Тем не менее при больших значениях она дает значения более близкие реальным, чем получаемые с помощью метода наименьших квадратов. Очевидно, что уравнение (1.2.15) также необходимо дополнить условиями (1.2.14).

Рассмотрим критерий (1.2.15) более подробно. При =0 мы получаем обычный метод наименьших квадратов, не пригодный в нашем случае. При >0 второй член в левой части (1.2.15) является регуляризатором. Он стабилизирует решение, поддерживая коэффициенты малыми (близкими к 1/ ). Тем не менее, если некоторый спектр содержит компоненты, которые хорошо аппроксимируют , это ограничение не будет иметь такой силы, так как минимизация левой части уравнения (1.2.15) сможет быть достигнута в большей степени уменьшением первого члена, чем второго, что приводит к наиболее оптимальному значению . Таким образом получается очень гибкая, но стабильная модель, которая самостоятельно выбирает из большого набора базисных спектров те, которые аппроксимируют данные наилучшим образом. В случае анализа спектров КД белков уравнению (1.2.15) можно дать следующую интерпретацию. Поскольку априори нельзя сказать, какой из спектров будет аппроксимировать лучше, ни один из них не имеет преимущества, и все коэффициенты полагаются приблизительно равными, близкими к 1/ (смотри условия (1.2.14)).

При возрастании параметра точность аппроксимации экспериментальных данных падает за счет уменьшения эффективного числа степеней свободы, соответствующего числу свободных параметров в обычном методе наименьших квадратов. Обычно при малых это происходит медленно, но когда этот параметр становится слишком большим, число степеней свободы становится таким малым, что коэффициенты становятся равными 1/ , и метод полностью теряет свою гибкость. Выбор параметра определяется оптимальным компромиссом между гибкостью и стабильностью модели, тем самым давая наилучшие значения . Авторы данного метода осуществляли выбор с помощью автоматического статистического теста на относительное увеличение отклонения аппроксимирующего спектра (реконструированного из спектров эталонных белков) от экспериментальных данных при увеличении этого параметра.

Если при анализе спектра КД белка нам известно, что среди белков базисного набора есть белки, структурно схожие с исследуемым, то в уравнение (1.2.15) можно ввести эти данные с помощью различного взвешивания отдельных членов второй суммы этого уравнения, тем самым давая соответствующим коэффициентам большую свободу изменения. Однако сделать это объективно и количественно довольно сложно, поэтому авторы метода не пользовались этим. Как показывают эксперименты, в случае структурной схожести белков соответствующие коэффициенты автоматически выбираются наибольшими без какой-либо дополнительной информации.

Метод "ортогональных спектров" [5,6]. Основой данного метода является метод собственных векторов многокомпoнентного матричного анализа. Он позволяет проводить быструю обработку больших наборов данных с помощью формирования из них ортогональных компонент в виде собственных векторов с соответствующими собственными значениями.

Этот метод использует в качестве базисных спектры КД 16 белков с известной вторичной структурой в диапазоне 178-260 нм с интервалом в 2 нм (всего по 42 точки в каждом из 16 спектров). Пусть С - прямоугольная матрица размером 16 42, содержащая в качестве строк спектры КД эталонных белков. Умножая ее на свою транспонированную матрицу, получим симметричную квадратную матрицу CCT размером 16 16. Приведем эту матрицу к диагональному виду с помощью ортогональной матрицы U (16 16):

Характеристики

Тип файла
Документ
Размер
2,7 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7023
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее