150980 (598900), страница 5

Файл №598900 150980 (Теоретичні основи електротехніки) 5 страница150980 (598900) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

I=f(С), Uкат=f(С), UL=f(С), Uc=f(С), φ=f(С), P=f(С).

3. Побудувати в масштабі три векторні діаграми струму та напруги: до резонансу С<С0, в момент резонансу С=С0 та після резонансу С>С0.

4. Обчислити добротність контуру при резонансі для усіх значень опору реостату.

5. Зробити висновки по роботі.

Контрольні питання

1. Який режим роботи кола називають резонансним?

2. Як дослідним шляхом досягти резонансу в колі С послідовно з’єднаними котушкою індуктивності і конденсатором?

3. Від чого залежить добротність контура, резонанасна частота контура?

4. Як аналітично записати умову резонансу в колі в загальному випадку?

5. Як знайти вираз ω0 для розгалуженого кола?

Література:

[ 1, c.120; 2, c.105; 3, c.116; 4, c.262; 5, c.147 ].

Лабораторна робота №9

РЕЗОНАНС СТРУМІВ

Мета роботи: дослідити електричний резонанс в лінійному колі синусоїдного струму з паралельним з’єднанням котушки індуктивності і конденсатора.

Теоретичні положення

На мал.9.1 зображено коло з паралельним з’єднанням котушки з втратами і конденсатором, яке називають паралельним коливальним контуром.

Повну вхідну провідність кола позначають виразом

,

де g та b — відповідно активна та реактивна провідності кола:

.

За визначенням резонансу умова резонансу запишеться:

. (9.1)

Звідки знаходять резонансну частоту:

,

де —характеристичний опір контура;

—резонансна частота при відсутності втрат в контурі.

При наявності умови резонансу повна вхідна провідність контура y=g і вхідний струм співпадає по фазі з вхідною напругою. Векторна діаграма кола (мал.9.1) при резонансі показана на мал.9.2.

Маючи умову резонансу легко знайти значення струмів у колі (мал.9.1) в стані резонансу:

(9.2)

З останнього виразу ясно, що при ρ>>r струми в вітках значно перевищують вхідний струм. Тому резонанс в паралельному коливальному контурі називають резонансом струмів. В практиці відношення може досягти сотен одиниць і в стільки разів вхідний струм буде менший струмів у вітках.

При резонансі реактивні потужності котушкиі конденсатора рівні за значенням і протилежні за знаком :

,

тому реактивна потужність всього кола дорівнює нулю. Потужність, яка втрачається в котушці при резонансі,

.

Величину, яка показує, в скільки разів реактивна потужність котушки або конденсатора при резонансі більша потужності яка втрачається в контурі, називають добротністю контура і позначають літерою Q –

.

Якщо , то і струм на вході при резонанасі приблизно в Q раз менше струмів у вітках.

Стану резонансу в колі, як це очевидно із умови резонансу (9.1), можна досягти зміною частоти ω, або параметрів кола r, L, С. Залежності струмів у колі (мал.9.1) від частоти і параметрів кола визначають виразами:

,

С ,

.

В практиці, як правило, настройку контурів в резонанс здійснюють з допомогою зміни ємності, оскільки ємність можна легко змінювати в широких межах.

З виразу (9.2) витікає, що при настройці контура в резонанс з допомогою зміни ємності вхідний струм в стані резонансу буде мінімальним, також мінімальною буде активна потужність, яку споживає контур.

Порядок виконання роботи

1. Зібрати коло згідно мал.9.3, використовуючи наступні прилади: вольтметр на 75-150В, фазометр на 5А, 127В, амперметри на 1-2А. Конденсатор змінної ємності знаходиться на стенді. Котушку індуктивності взяти у лаборанта.

2. На вхід кола подати напругу 50В, і змінюючи ємність, досягти в колі резонансу струмів.

Результати вимірювання занести до табл. 9.1.

3. Підтримуючи за допомогою ЛАТРа сталу напругу на вході кола (яка встановлена в п.2), змінювати ємнічть від нуля до максимального значення (по 5-7 точок до і після резонансу ) через 1-2мкФ, а поблизу резонанса через 0,25-0,5 мкФ. Результати вимірювання занести до табл. 9.1.

Обробка результатів досліду

1. За даними вимірів розрахувати величини наведені в табл.9.2, вважаючи, що активний опір конденсатора дірівнює нулю.

2. На підставі даних вимірів і обчислень побудувати на одному малюнку залежності I=f(C), I1=f(C), I2=f(C), P=f(C), φ=f(C), cosφ=f(C).

3. Побудувати в масштабі три векторні діаграми струмів і напруг: до резонансу С<С0, в момент резонансу С=С0 та після резонансу С>С0.

4. Обчислити добротність контуру при резонансі .

5. Зробити висновки по роботі.

Контрольні запитання

  1. Чим відрізняється резонанс струмів від резонансу напруг?

  2. Як дослідним шляхом встановити в паралельному коливальному контурі резонансний режим?

  3. Що таке добротність контура, як її визначити дослідним шляхом?

  4. Як аналітично визначити ємність паралельного контура, при якій наступає резонанс?

  5. Чому до резонансу φ>0?

Література:

[ 1, c.130; 2, c.110; 3, c.125; 4, c.268; 5, c.149 ].

Лабораторна робота №10

ДВОПОЛЮСНИК І ЙОГО КРУГОВА ДІАГРАМА

Мета роботи: визначити комплексний опір пасивного двополюсника і побудувати кругову діаграму за дослідними даними.

Теоретичні положення

Будь –яке складне коло, що складає пасивний двополюсник, можна завжди з допомогою перетворень привести до одного, в загальному випадку комплексного, опору. На практиці часто (мал.10.1) характер та значення опорів, а токож схема з’єднання елементів кола невідомі. В цих випадках еквівалентний двополюснику опір знаходять дослідним шляхом за методом амперметра-вольтметра-ватметра, як показано на мал.10.2.

Конденсатор С, ввімкнений паралельно затискачам двополюсника, використовується для визначення характеру (ємнісного чи індуктивного) вхідного опору двополюсника (мал.10.2).

Повний, активний і реактивний опори пасивного двополюсника, як це вже відомо з попередніх робіт, визначають за показаннями амперметра, вольтметра і ватметра:

.

Характер реактивного опору вх знаходять з порівняння показань амперметра до і після вмикання ключа К (мал.10.2). Якщо після вмикання невеликої ємності струм став більшим ніж до вмикання, то опір двополюсника має ємнісний характер, якщо струм зменшився – індуктивний. Вирогідність цих стверджень можна перевірити побудовою векторних діаграм для обох випадків.

1.Визначення вхідного опору двополюсника.

Опір двополюсника має ємнісний характер (мал.10.3). Позначимо струм, який показує амперметр до підключення ємності С , через ІА1. Цей струм дорівнює струму через двополюсник і внаслідок ємнісного характеру двополюсника випереджує прикладену напругу U при rвх≠0 на деякий кут, менший 900 (мал.10.4). Після підключення конденсатору С напруга на затискачах двополюсника не змінюється, тому через двополюсник, як і раніше, проходить струм ІА1. Але тепер через конденсатор проходить струм Іс, який і випереджує U на 900. Геометрична сума струмів Іс та ІА1 дорівнює струму ІА2, який більший , ніж струм ІА1, тобто при ємному характері опору двополюсника показання амперметра збільшуються.

Анологічно можна показати, що в випадку індуктивного характеру опору двополюсника після підключення ємності С , показання амперметра зменшується. Цей випадок доцільно розглянути самостійно.

2.Побудова кругової діаграми двополюсника.

Двополюсник звичайно вмикають послідовно з приймачем (мал.10.1). Струм у колі:

де Zвх=zвхeвх – комплекс вхідного опору двополюсника,

Zпр=zпрeпр –комплекс опору приймача.

Нехай модуль z пр опору приймача змінюється від 0 до ∞, а кут зсуву фаз на приймачеві

Це означає, що активні і реактивні опори приймача змінюються в однаковій степені. Поділивши чисельник і знаменник правої частини рівняння (10.1) на Zвх отримаємо:

Але струм короткого замикання двополюсника, тобто при Zпр=0

Тому можна записати: (10.2)

Рівняння (10.2) є рівнянням кола в векторній формі. Якщо зобразити струм І вектором на комплексній площині (мал.10.5), то кінець цього вектора при U=const і зміні zпр від 0 до ∞ опише дугу кола. Початок вектора І знаходиться завжди у точці 0.

З рівняння (10.2) випливає, що для побудови кругової діаграми двополюсника необхідно знайти Ікз, Zвх, φвх, φпр. Побудову кругової діаграми зручно починати з вектора напруги U , який відкладаємо по вісі +1 комплексної площини (мал.10.5). Знаючи з досліду Ікз, відкладаємо його під кутом φвх до вектора U (мал.10.5 відповідає двополюснику з ємнісним характером опору, тобто φвх>0). Потім через кінець вектора Ікз (в точці А) під кутом ψ до нього проводимо відрізок А-а, який лежить на дотичній до кола (в даному випадку ψ <0) . Для визначення центру кола проводимо перпендикуляри через середину вектора Ікз і до відрізку А-а в точці А. Точка 0/ перетину перпендикулярів є центром кола. Радіусом 0/А проводимо в бік, протилежний відрізку дотичної дугу кола АЕ0. По цій дузі переміщується кінець вектора І при зміні zпр .

Для того, щоб встановити, який струм відповідає знайденому значенню zпр відкладемо на лінії, по якій відкладений вектор Ік відрізок 0В, рівний в масштабі опору zвх. Проведемо через точку В під кутом ψ до Ік лінію ВС. Відкладемо на лінії ВС відрізок ВД, рівний в масштабі для zвх деякому заданому опору приймача zпр = zпр1 . З’єднаємо точку Д з точкою 0. Точку перетину відрізку ОД з дугою позначимо Е. Відрізок ОЕ в масштабі є струм І1, що відповідає опору приймача zпр1 . Лінія ВС є лінія модулю zпр. Опустимо перпендикуляр з точки Е на вектор U і отримаємо відрізок 0F=І1cosφ1. Помножимо цей результат на U (з урахуванням масштабів), отримаємо вхідну активну потужність кола Р1 . Отже, проекції вектора І на U в масштабі відображають активну потужність кола. Відрізок 0G, рівний проекції вектора І1 на напрямок, перпендикулярний до U, відображає в масштабі вхідну реактивну потужність Q1= I1Usinφ1.

З допомогою кругової діаграми можна зробити графічне дослідження режимів двополюсника при зміні модуля опору приймача від 0 до ∞.

Порядок виконання роботи

  1. Зібрати коло для визначення характеру і параметрів пасивного двополюсника (мал.10.2). Двополюсник взяти у лаборанта.

Необхідні прилади: амперметр на 1–2А, вольтметр на 150В, ватметр на 150В, 1А. Конденсатор і ключ взяти на стенді. Ємність конденсатора не більше 10мкФ.

2. При розімкненому ключі К встановити ЛАТРом напругу, зручну для вимірів і записати показання приладів (крім ІА2), в табл.10.1. Вивести ЛАТР, підключити конденсатор С і виміряти струм ІА2 при тій же напрузі на виході ЛАТРу. Результат записати в табл.10.1.

3. Зібрати схему згідно мал.10.6 (А-амперметр на 1–2А; V1–вольтметр на 150В, V2–вольтметр на 60В; φ–фазометр; r–реостат на 30 Ом, 5А; С–магазин ємностей на стенді ).

4. Виконати дослід короткого замикання двополюсника. Для цього вивести ЛАТР на нуль і при відключеній напрузі живлення закоротити приймач zпр (точки а-b). Ввімкнути напругу, встановити ЛАТРом таке її значення, щоб струм у колі дорівнював 1А. Результати вимірів занести до табл.10.2.

5. Виміряти напругу, струм, потужність та кут зсуву фаз для

трьох значень модуля активно-ємного опору приймача при сталому значенні кута φпр, взятому за вказівкою викладача в межах 600-800. Дані вимірів занести до табл.10.2.

Обробка результатів експерименту

1. Обчислити параметри пасивного двополюсника і занести їх до табл.10.1.

2. За даними досліду п.п.4 і 5 порядку виконання роботи обчислити величини, вказані в табл.10.3 (φ-кут зсуву фаз між напругою U і струмом І).

3. Побудувати кругову діаграму двополюсника.

4.Визначити з кругової діаграми значення струмів, напруг, потужностей і кутів зсуву фаз для тих же трьох значень опору приймача, які існували в п.5 порядку виконання роботи.

Результати занести до табл.10.2.

5.Порівняти значення, отримані з кругової діаграми, з дослідними даними табл.10.2.

6.Зробити висновки по роботі.

Контрольні питання

1. Як дослідним шляхом визначити характер (індуктивний чи ємний) двополюсника?

2.Які виміри необхідно виконати для побудови колової діаграми двополюсника?

3. Як з колової діаграми двополюсника визначити струм при відомому модулі опору приймача?

4. Як з колової діаграми двополюсника визначити активну та реактивну потужності кола?

5.В якій послідовності будується колова діаграма двополюсника?

Література

[ 1, c.136; 2, c.161; 4, c.430; 5, c.324 ].

Література

1.Атабеков Г.И. Теоретические основы электротехники. Ч.1–М.: Энергия , 1978.– 592с.

2.Зевеке Г.В. и др. – Основы теорий цепей. –М.: Энергоатомиздат, 1989. – 528с.

3.Карпов Ю.О., Магас Т.Є., Мадьяров В.Г. Конспект лекцій з курсу “Теоретичні основи електротехніки”. Ч.1 – Вінниця, ВПІ, 1992. – 174с.

4.Нейман А.Р., Демирчян К.С. Теоретические основы электротехники. Т.1. –Л.: Энергоиздат, 1981. –534с.

5.Перхач В.С. Теоретична електротехніка. –К.: Вища школа, 1992. – 440с.

Характеристики

Тип файла
Документ
Размер
1,99 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6472
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее