150435 (598869), страница 2

Файл №598869 150435 (Кинематика и динамика поступательного движения) 2 страница150435 (598869) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Если при повторении измерений в одних и тех же условиях 3 – 4 раза получено одно и то же значение, то это означает, что измерения не обнаруживают случайных изменений, а погрешность обусловлена только систематической погрешностью. Систематическая погрешность в данном случае определяется погрешностями измерительных приборов и часто называется инструментальной или приборной погрешностью. Есть несколько способов задания этой погрешности:

а) Для некоторых приборов инструментальная погрешность дается в виде абсолютной погрешности. Например, для штангенциркуля, в зависимости от конструкции его нониуса,– 0,1 мм или 0,05 мм, для микрометра – 0,01 мм.

б) Для характеристики большинства измерительных приборов часто используют понятие приведенной погрешности п (класса точности).

Приведенная погрешность – это отношение абсолютной погрешности х к предельному значению хпр измеряемой величины (т.е. к наибольшему её значению, которое может быть измерено по шкале прибора). Приведенная погрешность обычно дается в процентах:

. (3)

По величине приведенной погрешности приборы разделяют на семь классов: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4.

Зная класс прибора, можно рассчитать его абсолютную погрешность. Например, вольтметр имеет шкалу делений в пределах от 0 до 300 В пр=300 В) и класс точности 0,5. Тогда

.

в) В некоторых случаях используется смешанный способ задания инструментальной погрешности. Например, весы технические (Т–200) имеют класс точности 2. В то же время указывается, что при нагрузке до 20 г абсолютная погрешность равна 5 мг, до 100 г – 50 мг, до 200 г – 100 мг. Набор школьных гирь относится 4-му классу точности, а допустимые погрешности масс гирь указаны в таблице 1.

Таблица 1

Номинальное значение, г

100

50

20

10

5

2

1

Абсолютная погрешность, мг

+40

+30

+20

+12

+8

+6

+4

Номинальное значение, г

500

200

100

50

20

10

5

Абсолютная погрешность, мг

3

2

1

1

1

1

1

Если, например, при взвешивании на таких весах с таким набором гирь получено значение массы тела 170 г (100 г + 50 г + 20 г), то абсолютная погрешность взвешивания равна: х = 40 + 30 + 20 + 100 = 200 (мг)=0,2(г).

г) В тех случаях, когда класс точности прибора не указан, абсолютная погрешность принимается равной половине цены наименьшего деления шкалы прибора. Так при измерении линейкой, наименьшее деление которой 1 мм, абсолютная погрешность равна 0,5 мм.

3. Статистический анализ случайных погрешностей

Пусть при повторении измерений одной и той же физической величины х в одинаковых условиях получены различные значения: x1, x2, …, xn. Это означает, что есть причины, приводящие к случайному «разбросу» измеряемой величины xi (помехи, трение и т. п.). В этом случае наилучшей оценкой измеряемой величины является среднее арифметическое значение найденных значений xi

, (4)

где n - число измерений.



При наличии случайных погрешностей появление того или иного значения величины xi является случайным событием. Вероятность появления того или иного значения чаще всего определяется законом нормального распределения Гаусса. Распределение случайных погрешностей также чаще всего бывает нормальным. Поэтому распределение Гаусса может быть записано и как закон нормального распределения случайных погрешностей , которое при бесконечно большом числе измерений имеет вид:

. (5)

Наилучшей оценкой погрешности отдельного измерения в этом случае является стандартное отклонение (СО):

. (6)

Величину 2 называют дисперсией.

На кривой нормального распределения случайных погрешностей (рис. 1) имеются две характерные точки перегиба А, А. Абсциссы этих точек равны , т. е. стандартному отклонению. Можно показать, что вероятность появления погрешностей, не выходящих за пределы , равна 0,6827 ( 68 %) . Иначе говоря, при достаточно большом числе измерений (практически при n30) приблизительно 70 % результатов измерений будут попадать в интервал . В другой терминологии: «попадание результата

измерений в доверительный интервал гарантировано с надежностью = 0,68 »

Конечно, надёжность измерений может быть задана и большая, чем 0,68. В этом случае доверительный интервал расширяется и его границы могут быть рассчитаны с помощью так называемых коэффициентов Стьюдента. При выполнении учебных лабораторных работ вполне можно ограничиться надежностью =0,68.

Стандартное отклонение характеризует среднюю погрешность отдельных измерений. Результат измерений есть разумная комбинация всех n измерений, и поэтому имеются основания полагать, что он будет более надёжным, чем любое из отдельных измерений.

Стандартное отклонение среднего (СОС или SDOM - standard deviation of the mean) равно стандартному отклонению , деленному на :

. (7)

Таким образом, результат многократных измерений какой-либо физической величины должен представляться в виде:

. (8)

Чтобы учесть и случайную и систематическую погрешность, т.е. рассчитать полную погрешность измерений, обычно используют правило квадратичного сложения:

. (9)

4. Оценка точности косвенных измерений

Большинство физических величин обычно невозможно измерить непосредственно, и их определение включает два различных этапа. Сначала измеряют одну или более величин x,...,z, которые могут быть непосредственно измерены и, с помощью которых можно вычислить интересующую нас величину. Затем, используя измеренные значения x,..., z, вычисляют саму искомую величину. Если измерение включает эти два этапа, то и оценка погрешностей тоже включает их. Сначала надо оценить погрешности в величинах, которые измеряются непосредственно, а затем определить, к какой погрешности они приводят в конечном результате. При этом, конечно, необходимо учитывать вид функциональной связи между величинами.

Погрешность функции q=f(x,...,z) нескольких переменных x,...,z, измеренных с погрешностями x,...,z ... в случае, если погрешности независимы и случайны, определяется по формуле:

. (10)

Вычисления погрешности с помощью формулы (9) обычно оказываются достаточно громоздкими. Поэтому лучше производить поэтапное вычисление, используя некоторые правила, два из которых являются наиболее употребляемыми:

1. Абсолютная погрешность суммы и разности равна квадратичной сумме абсолютных погрешностей

. (11)

2. Относительная погрешность комбинации произведения и частного равна квадратичной сумме относительных погрешностей

,

. (12)

Правила вычисления погрешностей для некоторых других функций приведены в Приложении 1.

Рассмотрим последовательность действий при вычислении погрешности косвенного измерения на примере формулы

.

Сначала найдем абсолютную и относительную погрешность суммы w=m+M:

.

Затем найдем относительную и абсолютную погрешности величины v:

.

Анализ полученной окончательной формулы позволяет установить:

а) Погрешности каких именно величин вносят наибольший вклад в общую погрешность. Точному измерению этих величин необходимо уделить наибольшее внимание.

б) Погрешности каких величин практически не влияют на окончательный результат и их можно даже отбросить.

Будем в дальнейшем не принимать в расчет погрешности постоянных (g, e, ...) и табличных величин, измеренных с большой точностью. Например, погрешность приближенного числа 3,14 составляет всего 0,05 %.

5. Линеаризация функции и метод наименьших квадратов



В физических исследованиях очень часто для сравнения эксперимента с теорией пользуются методом линеаризации теоретической зависимости, Например, исследуется зависимость перемещения S равноускоренного движения от времени движения. Теоретическая зависимость имеет вид

, (13)

где а – ускорение грузов.

Если по экспериментальным точкам построить график зависимости S от t, представляющий собой восходящую кривую, то по виду графика нельзя утверждать, что это парабола и именно та парабола второго прядка, которая соответствует проверяемой закономерности, т. к. похожие графики могут иметь другие закономерности. Единственным графиком, по внешнему виду которого можно однозначно судить о характере исследуемой зависимости, является прямая линия. Для того, чтобы воспользоваться этим свойством

в проверяемой закономерности необходимо выявить в ней такие новые переменные, зависимость между которыми была бы линейной. В нашем случае такими переменными являются S и t2. Следовательно, для проверки справедливости соотношения (13) имеет смысл строить график экспериментальной зависимости S от t2. На систему координат S, t2 (рис. 2) следует нанести экспериментальные точки, а также вправо и влево от них отложить отрезки, длина которых равна погрешностям измерения t2 (доверительным интервалам). Если через начало координат и доверительные интервалы можно провести прямую линию, т. е. экспериментальная зависимость S = f(t2) является линейной, значит соотношение (13) подтверждено экспериментально.

Используя график линеаризованной зависимости, можно определить некоторые параметры изучаемого явления из следующих соображений. Уравнение прямой можно записать в виде

y = kx +b. (14)

Характеристики

Тип файла
Документ
Размер
12,15 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее