150434 (598868), страница 3

Файл №598868 150434 (Кинематика) 3 страница150434 (598868) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

B = A + + = A + × ( ) + × ; (2)

где , , - векторы угловой скорости и углового ускорения вращения плоской фигуры вокруг любой оси, например Az' перпендикулярной плоскости движения Oxy относительно системы координат Ax'y'z', оси которой параллельны осям неподвижной системы координат Оxyz.На рис.1 оси Оz. и Аz' не изображены, так как считается, что они перпендикулярны к плоскости рисунка и направлены на наблюдателя, а плоскости Охy и Аx'y' совпадают с плоскостью рисунка.

Левые части выражений

BA = = × ( ) = × BA; = × ;

являются соответственно векторами скорости, нормального и касательного ускорения точки В относительно системы координат Ax'y'z' при вращении отрезка АВ в плоскости рисунка вокруг точки A, называемой в таком случае полюсом, с угловой скоростью и угловым ускорением . Индексы n и , в выражениях и указывают, что эти векторы направлены соответственно по внутренней нормали и касательной в точке B к окружности радиуса r = AB с центром в точке А. Модули упомянутых векторов н аходятся по формулам

BA = AB = = AB = AB (3)

Векторы BA, , лежат в плоскости движения плоской фигуры тела, причем ненулевые векторы BA, перпендикулярны отрезку AB, а ненулевой вектор направлен от точки В к точке А . Таким образом, для этих векторов всегда известны линии действия.

Поскольку модуль ускорения может быть вычислен по формуле (3) через угловую скорость тела , обычно известную к этапу нахождения ускорений, целесообразно в формуле (2) вектор записывать вслед за известным вектором А, т.е. перед вектором .

Векторы и параллельны оси Оz и поэтому полностью определяются своими проекциями на эту ось

Модуль проекции равен модулю вектора , а знак проекции указывает на направление вектора. Например, если проекции векторов положительны ( , то векторы направлены так же, как и , или ось Oz. Таким образом, при плоском движении тела задача нахождения векторов сводится к задаче отыскания их проекций на ось Oz или Az'.

Если (рад) - угол между осью Ax' (Ох) и вектором (рис. 1) и за положительное направление отсчета угла для выбранной системы координат принято направление против хода часовой стрелки, то

рад/с = = рад/с. (4)

О направлении векторов и судят по круговым стрелкам и согласно правилу: "круговая стрелка, направленная против хода стрелки часов, соответствует вектору, направленному так же, как ось Oz".

Из формул, использующих понятие МЦС (точка Р) на рис.2,

B =

, (5)

следует, что в данный момент времени распределение скоростей точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Рz с угловой скоростью .


Е сли отсчитывать угол 90 от направления вектора скорости точки A к направлению АР от этой точки до МЦС, то направление отсчета угла совпадает с направлением круговой стрелки . Этот факт можно использовать для определения направления вектора .

Из формул, использующих понятие МЦУ (точка Q на рис. 3),

(6)

,

следует, что в данный момент времени распределение ускорений точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Qz с угловой скоростью и угловым ускорением .

Угол отсчитывается от вектора ускорения какой-либо точки в направлении круговой стрелки . При отыскании положения МЦУ по ускорениям двух точек, например по и , под углом к соответствующим ускорениям проводят лучи AQ и BQ. Точка пересечения лучей (точка Q) является МЦУ плоской фигуры в данный момент времени.

Направления векторов и помимо формул (4) могут быть найдены из отдельных векторных формул

. (7)

Рис. 4

Чтобы избежать анализа расположения трех взаимно перпендикулярных векторов формул (7) при известных , , направления и находят аналогично случаю вращательного движения тела вокруг неподвижной оси (рис. 4).

Рис. 5

Кинематика плоского движения

катка радиуса R. при отсутствии скольжения по направляющей (в общем случае криволинейной), имеет некоторые особенности вследствие того, что мгновенный центр скоростей катка (точка Р ) совпадает с точкой окружности касающейся направляющей (рис. 5). Поэтому при движении катка расстояние от его центра (точки А) до МЦС является неизменным во времени и равным R.

AP(t) = const = R (8)

Свойство неизменности расстояния АР позволяет установить дополнительные соотношения, удобные для расчетов кинематических характеристик катка. Представим вектор скорости точки А с помощью:

а) формулы естественного способа задания движения точки

, где - единичный вектор естественного трехгранника, касательный в точке A к кривой ее движения; SA - криволинейная координата точки;

б) формулы (7) плоского движения тела

,

- орт оси Оz, перпендикулярной плоскости движения катка Qxy - угол, задающий направление какого-либо отрезка плоской фигуры катка. Ввиду произвольности выбора такого отрезка, обычно собственно отрезок, не указывают на рисунках, а изображают лишь круговую стрелку положительного направления отсчета угла , называя его углом поворота катка.

Приравнивая правые части последних формул, имеем

.

Поскольку вектoр коллинеарен результату векторного произведения

( , ), то

.

Откуда, используя свойство (8), получим формулы

, или , (9)

справедливые для любого момента времени t.

В правой части формулы (9) берется знак "+", если при мысленном увеличении угла поворота катка в направлении против хода стрелки часов наблюдается возрастание координаты SА центра движущегося катка в положительном направлении ее отсчета, иначе берется знак "-".

Так, например, для случая отсчетов SА и , изображенном на рис.5, в формуле (9) необходимо брать знак "-".

Дифференцируя и интегрируя по времени соотношения (9), придем к выражениям

, или , (10),

а также ,

где С - некоторая константа, значение которой зависит от выбора начал отсчетов SА и . Обычно принимают С=0, так как считают, что когда SА=0, также равно нулю. Из произведения соответствующих частей формул (9), (10),

(11)

с ледует, что если векторы , сонаправлены, то сонаправлены и векторы , .

Таким образом, с помощью формул (1-4), (8-9) могут быть найдены характеристики векторов скоростей и ускорений точек, векторов угловых скоростей и ускорений звеньев механизма, а с помощью формул (5, 6), (11) осуществлена их проверка.

Нахождение кинематических характеристик движения ( , , , ) при помощи векторных формул (1), (2) рекомендуется проводить следующим образом:

  1. написать формулу (1) или (2) применительно к конкретным точкам рассматриваемого звена механизма. При этом в качестве полюса следует взять точку с известными кинематическими характеристиками движения;

  2. установить, известны или неизвестны на данном этапе решения две независимые характеристики {проекции на две оси или модуль и направляющий угол) для каждого вектора, входящего в уравнение (1) или (2). Найти значения тех независимых характеристик векторов, которые могут быть установлены из условий движения звена без решения рассматриваемого векторного уравнения;

3) решить векторное уравнение графоаналитическим или аналитическим методом (метод проекций).

Характеристики

Тип файла
Документ
Размер
28,46 Mb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее