147425 (598847), страница 3
Текст из файла (страница 3)
. (26)
Радиусы вертикальных вогнутых кривых определяются из условия обеспечения видимости проезжей части в ночное время при свете фар. Расчет ведется по формуле:
, (27)
гдеhф – высота фар легкового автомобиля над поверхностью проезжей части, (hф =0,75 м);
а – угол рассеивания пучка света фар (а=2°).
Величина радиуса вертикальной кривой с учетом самочувствия пассажиров и перегрузки рессор определяется из выражения:
, (28)
гдеа0 – центробежное ускорение, принимаемое равным: 0,3 – 0,4 м/с2 для дорог I – III технических категорий, 0,5 – 0,7 м/с2 для дорог IV – V технических категорий.
При обосновании радиусов вертикальных кривых следует учитывать рекомендации СНиП 2.05.02-85. Если имеется возможность по местным условиям и не ведет к удорожанию строительства, применять радиусы вертикальных выпуклых кривых не менее 70000 м (длина кривой более 300 м) и вогнутых кривых – 8000 м (длина кривой не менее 100 м).
В зависимости от сложности условий рельефа в пределах одной категории дороги допускается изменение радиусов в весьма широких пределах. Так, например, для дорог II категории радиусы выпуклых кривых принимают от 15000 до 2500 м.
3.2.6 Определение пропускной способности и уровня загрузки дороги
Пропускная способность одной полосы движения при условии отсутствия обгонов определяется по формуле:
, (29)
гдеP – пропускная способность одной полосы движения, авт./ч;
L – динамический габарит автомобиля (наименьшее расстояние между движущимися автомобилями), м:
, (30)
гдеlа – средняя длина автомобиля, м;
К – коэффициент снижения скорости движения автомобиля в потоке, принимаемый равным 0,3 – 0,5.
Величина продольного уклона i принимается на спуске со знаком «-» на подъеме со знаком «+». На ровном участке i = 0.
Пропускная способность одной полосы движения вычисляется отдельно для грузового и легкового расчетного автомобиля.
Количество полос движения (n) определяется по формуле:
, (31)
гдеN – суточная интенсивность движения, авт./сут.;
t – коэффициент для приведения суточной интенсивности движения к часовой (принимается по таблице 5).
Таблица 5 – Значение коэффициента перехода от суточной интенсивности движения к часовой
Категория дорог | I | II | III | IV | V |
Значение коэффициента | 0,09 – 0,12 | 0,12 – 0,15 | 0,15 – 0,18 | 0,28 – 0,2 | 0,2 |
Обычно по расчету число полос движения оказывается меньше, чем требуется по нормам. Для дорог II, III и IV категорий следует принимать две полосы движения.
Полная пропускная способность дороги определяется по формуле:
. (32)
Практическая пропускная способность дороги из-за неравномерности движения автомобилей составляет 0,3 – 0,5 от ее теоретического значения.
Для оценки состояния потока автомобилей, эмоционального напряжения водителей, удобства работы и экономической эффективности работы дороги используют коэффициент загрузки дороги движением, вычисляемый по формуле:
. (33)
Определение уровня загрузки дороги движением характеризует ряд показателей включающих уровень удобства, состояние потока, коэффициент обеспеченности скоростью. Данные характеристики представлены в [1, 3]. Определенные оценочные параметры уровня загрузки дороги движения необходимо указать в расчетно-пояснительной записке к курсовому проекту.
3.2.7 Определение ширины проезжей части дороги и земляного полотна
Необходимая ширина полосы движения складывается из ширины кузова автомобиля, расстояний от кузова до края смежной полосы движения и от колеса до кромки проезжей части. Эти расстояния зависят также от индивидуальных особенностей водителей и их значения могут быть установлены только на основе большого числа наблюдений.
В данном курсовом проекте ширина полосы движения определяется по методу С. М. Замахаева.
Для двухполосной дороги с двухсторонним движением ширина одной полосы определяется по формуле:
, (34)
гдеа – ширина кузова автомобиля, м;
К – ширина колеи автомобиля, м;
х – расстояние от кузова автомобиля до оси проезжей части, м;
у – ширина предохранительной полосы – расстояние до кромки покрытия, м.
Для двухполосной дороги величина:
. (35)
Окончательно формула для расчета имеет вид:
. (36)
Для четырехполосной проезжей части расчет производится для одного направления при попутном движении с обгоном. Ширина одной полосы движения в этом случае определяется по формуле:
. (37)
Вычисления производятся отдельно для грузовых и легковых автомобилей. Общая ширина проезжей части одного направления:
. (38)
Вычисления производятся согласно рисунку 3.
Рисунок 3 – Схема к определению ширины полосы движения
Ширина земляного полотна для двухполосной проезжей части ширина земляного полотна вычисляется по формуле:
, (39)
гдеd – ширина обочины, м (принимается по СНиП 2.05.02-85).
Для четырехполосной проезжей части:
, (40)
гдес – ширина разделительной полосы.
3.2.8 Сравнение расчетных параметров с нормативными
В заключении этого раздела курсового проекта составляется сравнительная таблица технических нормативов проектируемой дороги по форме, приведенной в таблице 6.
Таблица 6 – Сравнительная таблица основных технических нормативов проектируемой дороги
Наименование показателей | Ед. изм. | Показатель | Примечания | |||
по расчету | по СНиП 2.05.02-85 | принят для дальнейших расчетов | ||||
1. Расчетная скорость | км/ч | |||||
2. Ширина полосы движения | м | |||||
3. Число полос движения | шт. | |||||
4. Ширина проезжей части | м | |||||
5. Ширина земляного полотна | м | |||||
6. Минимальный радиус кривой в плане | м | |||||
7. Максимальный продольный уклон | ‰ | |||||
8. Минимальный радиус кривой в плане | м | |||||
9. Минимальные радиусы вертикальных кривых: выпуклых вогнутых | м м |
При сравнении в качестве расчетного принимается лучший параметр, то есть больший минимальный радиус, меньший продольный уклон и т. д.
Расхождение с нормами объясняются тем, что последние приняты для средних условий. В эти нормы можно вводить поправки, если они обоснованы технико-экономическими расчетами.
3.3 Проектирование плана трассы автомобильной дорог
В проектах новых автомобильных дорог одним из основных документов является план трассы (вид сверху) или горизонтальная проекция дороги. Для лучшей ориентировки трассу делят на километры и на стометровые отрезки, называемые пикетами. Пикеты и километры последовательно нумеруют.
При проложении трассы дороги по карте в горизонталях необходимо учесть, что нормируемыми элементами трассы в плане являются наименьшие радиусы кривых, наименьшие параметры переходных кривых и длина прямолинейных участков.
Длину прямолинейных участков трассы назначают исходя из условия недопущения притупления внимания водителей и прогрессирующей их усталости при движении по длинным прямым, особенно в условиях монотонного ландшафта. Поэтому прямые участки трассы рекомендуется ограничивать длиной 4 – 6 км.
Следует избегать и очень коротких прямых вставок между кривыми. Водитель должен иметь возможность оценить закругление, принять решение о необходимости изменения режима движения и осуществить это изменение.
Во всех случаях, когда по условиям местности представляется возможность, следует принимать [13]:
– радиусы кривых в плане не менее 3000 м;
– радиусы вогнутых кривых не менее 70000 м;
– радиусы вогнутых кривых не менее 8000 м.
Между односторонними (направленными в одну сторону) кривыми прямые вставки короче 300 – 450 м допускать не следует, так как короткие вставки в подобных случаях водитель воспринимает как неприятный для взгляда излом, нарушающий плавность дороги, и старается резко снизить скорость движения, хотя этого не требуется по условиям безопасности движения.
В настоящих методических указаниях применяется так называемый традиционный метод трассирования автомобильных дорог (полигонное трассирование), а по сути последний его этап – вписывание кривых расчетного радиуса в переломы магистрального хода. Начальные и конечные точки участка автомобильной дороги, расположение магистрального хода, величины углов поворота, начальный румб – указаны в задании к курсовому проекту. Студенту требуется только определить основные параметры кривых и выполнить разбивку пикетажа.
Проектирование плана трассы выполняется в следующей последовательности:
-
По ходу трассы последовательно нумеруются углы поворота – угол между продолжением направления трассы и новым ее направлением (ВУП-1, ВУП-2 и т. д.).
Рисунок 4 – Схема разбивки закругления
2. Ориентируют трассу относительно сторон света. Для этого вычисляют румб начала трассы (например, означает, что участок длиной 260,3 м, расположен под углом 87 градусов 30 минут к меридиану). Румбы последующих прямых участков трассы определяются расчетом.
3. Далее по углу поворота и расчетному значению радиуса определяют основные элементы кривой и в точки перелома магистрального хода вписываются кривые. Различают следующие геометрические элементы закруглений (рисунок 4): угол α, радиус R, кривая К, тангенс Т, биссектриса Б, а также домер Д – разность между тангенсами кривой и длиной кривой. Данные параметры рассчитывают по формулам:
(41)
гдеR – принятый радиус вписываемой круговой кривой, м;
α – величина угла поворота, град.
Рисунок 5 – Схема угла поворота трассы
4. Разбивку пикетажа ведут от начала трассы до вершины первого угла поворота, и устанавливают его пикетажное значение. Например, вершина угла поворота, (ВУП 1) имеет пикетажное значение ПК 9+50 (рисунок 4). Для того чтобы продолжить разбивку пикетажа, необходимо определить значения начала (НК) и конца (КК) закругления, вынести пикеты на кривую и продолжить разбивку пикетажа до вершины следующего угла поворота.
Пикетажное значение начала закругления (НК) и конца закругления (КК) определяются по схемам:
Геометрическое положение точки начала кривой (НК) на трассе легко определить, если отложить от вершины угла поворота величину тангенса назад по ходу пикетажа, а положение точки конца кривой (КК) – вперед по ходу трассы (рисунок 4). Пропущенные пикеты в пределах закругления расставляются по кривой с учетом масштаба карты.
5. При заполнении ведомости углов поворота, прямых и кривых (таблица 7) величины Р – длина прямой вставки и S – расстояние между вершинами углов определяют по схемам: