115418 (598441), страница 4
Текст из файла (страница 4)
Увівши поняття суми векторів, задаю запитання учням:
Чи зміниться сума векторів:
b + a і a + b ?
Учні перевіряють і формулюють переставну властивість додавання векторів (аналогічно до алгебри), а також переконуються в тому, що координати їхні рівні.
С лід нагадати, що два вектори називаються протилежними, коли їхня сума дорівнює нульовому вектору:
a
+ (-a) =0.
IV. Закріплення матеріалу.
П ропоную декілька вправ:
1
) Дано вектори a(2;3), b(-1;0),c(-2,-3).Знайдіть суму векторів a і b, a і c, b і c.
Можливий запис:
a
+ b = (2;3) + (-1;0) = (1;3).
Звертаю увагу учням на те, що сума векторів є вектор. Зауважую, що сумою векторів може бути і нульовий вектор, наприклад,
a(2;3) + c(-2;-3) = 0.
-
Д
ано вектори a(-2;3), b(-1;-4), c(5;1). Перевірити властивості (самостійно з перевіркою):
а
) a + b = b +a; б) a + (b + c ) = ( a +b ) + c.
Учні переконуються у правильності рівностей і в тому , що це випливає з необхідної і достатньої умови рівності векторів
a
+ b і b +a , a + (b +c) і (a +b) + c.
3) Знайдіть абсолютну величину векторів
a + b, a(1;-4), b(-4;8),
a(10;7), b(2;-2).
VI. Підсумок уроку.
Підсумовуючи урок, наголошую учням, що ми навчилися додавати вектори за їхніми координатами, а також із властивостями векторів (аналогічно до алгебри). Повідомляю, що ці властивості мають відповідно іншу назву: комутативну й асоціативну.
VI. Завдання додому. п. 94(§10); зап.10 – 13; № 8(2);збираю зошити для перевірки.
УРОК 6. Тема уроку. ДОДАВАННЯ ВЕКТОРІВ (продовження)
Мета уроку. Сформулювати й довести теорему 10.1, а також ознайомити з ” правилом трикутника ” при додаванні векторів.
Тип уроку. Урок засвоєння нових знань.
Знання, вміння, навички. Знати формулювання теореми 10.1; уміти будувати суму двох векторів за ”правилом трикутника” і ”правилом паралелограма” і застосовувати нові знання до розв’язування завдань.
Наочні посібники і ТЗН. 1) Кодоскоп; 2) кодопозитиви; 3) діафільм ”Вектори на площині”; 4) картки для проведення самостійної роботи.
ХІД УРОКУ
І. Перевірка завдання вивченого матеріалу.
В икликаю учнів (4 – 6) до дошки і даю їм картки із завданням, наприклад, такого змісту.
-
Д
ано вектори m (2;3), n(1;-1), k(2;-1). Знайти m + n; б) | m + k |; в) m + n = n + m; г) m + ( n + k ) = ( m + n ) +k.
ІІ. Актуалізація опорних знань.
Р ешта учні розв’язують задачі (на пів усно) на кодоскопу. Поступово демонструю завдання на дошку-екран:
-
Координати точок А(1;-3), В(2:3). Знайти координати вектора АВ.
-
З
найти координати вектора с і абсолютну, якщо a(0;3), b(-4;0).
-
Сформулювати правило додавання векторів.
-
Сформулювати властивості додавання векторів.
-
Які вектори називаються рівними?
ІІ. Вивчення нового матеріалу.
1. На дошку-екран демонструю мал. 18, за допомогою якого разом з учнями доводжу теорему.
y
A(x1;y1)
C(x3;y3)
B(x1;y1)
O x
Мал.18
Учні записують.
Д
ано: A(x1;y1), B(x2;y2), C(x3;y3) – довільні точки площини.
Довести: AB + BC = AC (мал. 18).
Д
оведення. У процесі доведення задаю учням такі запитання:
1) Знайти координати векторів AB, BC, AC.
Учні записують в зошитах ( інший учень на дошці або на кодоскопу):
AB ( x2 – x1; y2 – y1);
BC ( x3 – x2; y3 - y2 );
AC ( x3 – x1; y2 – y1).
-
З
найти кординати вектора AB + BC.
2) Пропоную учням порівняти кординати векторів AB + BC і AC та
з
робити висновок. Учні роблять висновок і записують в зошиті рівність: AB + BC = AC, що й треба було довести.
На закріплення пропоную учням перевірити, що теорема справедливадля таких випадків: 1) дані точки A, B, C лежать на прямій, що паралельна осі Ox і осі Oy; 2) дані точки мають кординати a(1;1); B(3;5), C(7;4).Учні самостійно виконують завдання і роблять висновок.
N
M K P
Мал.19
2. Записати і відмітити (мал. 19 вектор, який дорівнює: а) MN + NP;б) MP+PN, в) NP+PM;
г
) PK+KM; д) PM=MK.
Учні виконують відповідні малюнки і використовують ”правило трикутника”.
Демонструю мал. 215, 216 (за підручником).
p
q
k
l
n c d
m
Мал. 20
Потім демонструю мал. 20 і пропоную виконати таке завдання : m+n, c+d k+l, p+q.
3. Розглядаю вправу №16 (§10, мал. 221, підручник)
Учні пригадують уроки фізики і коментують дії сил і розв’язуванні вправи які зображено на мал. 21.
[
AOP= OPB = α, тому OB = OC sin α, отже, | F| = |P |sin α ].
F
O
B
A
α C
Мал. 21
4. Демонструю побудову суми двох векторів за ”правилом паралелограма”.
План побудови.
1) Відкладаю від початку вектора а вектор b΄, яикй дорівнює вектору b.
b
a
d
b
Мал. 22
2 ) На векторах а і b΄, як на сторонах будуємо паралелограм.
3
) Провести із спільного початку векторів а і b΄ вектор d (діагональ паралелограма).d=a+b.
5 . На закріплення виконую таку вправу:
З найдіть геометричну суму векторів: а(1;-2) і b(3;-2).
Розв’язок демонструю на екран (мал. 23).Учні виконують побудову самостійно.
y
O
b x
a
c
Мал. 23
Доцільно запропонувати учням з’ясувати, як знайти суму трьох і більше векторів, використовуючи властивості додавання векторів. Повідомляю учням, якщо треба побудувати суму трьох і більше векторів, застосовують ”правило многокутника”, застосовуючи поступово ”правило трикутника ”.
ІІІ. Підсумок уроку.
Учні повторюють правила додавання векторів і що вони мають практичне застосування на уроках фізики у розділі ”Механіка”.
IV. Завдання додому. п.п. 94, 95(§10); зап. 14, 15; №№ 9,14,15.
УРОК – 7. Тема уроку. ДОДАВАННЯ ВЕКТОРІВ (продовження)
Мета уроку. Закріпити поняття суми векторів за допомогою “правила паралелограма ”, а також властивості додавання. Ознайомити учнів із поняттям різниці векторів.
Тип уроку. Урок засвоєння нових знань та застосування й формування вмінь.
Знання, вміння, навички. Знати правила й властивості додавання векторів уміти будувати суму двох векторів за правилами додаванням векторів і застосовувати нові знання для розв’язування вправ.
Наочні посібники і ТЗН. 1) Кодоскоп; 2)кодопозитиви; 3) таблиці із умовами та алгоритмом їх, розв’язування.
ХІД УРОКУ
І. Перевірка засвоєння вивченого матеріалу.
1. Перевіряю домашнє завдання за допомогою кодоскопа.
2. Задаю декілька запитань до класу:
-
Сформулювати правила додавання векторів і показати їх на на малюнку (підручника).
-
При якій умові два вектори рівні ?
-
Які закони застосовуються для додавання векторів?
-
Я
ке правило застосовується для трьох і більше векторів векторів
-
З
найдіть суму a(2;1) і b(-2;-1) і як називають цю суму векторів?
-
Демонструю зображення додавання векторів за допомогою кодос- копа.
ІІ. Вивчення нового матеріалу.
-
З
вертаю увагу на запис c = a – b і задаю запитання:
1 ) Що ми розуміємо під різницею, вивчали числа?
Т
ому різницею c = a – b векторів a і b називається такий c, який в сумі з числом a - b є таке число c , який в сумі з числом b дає вектор a.
П
ідсумовую: інакше кажучи, з різниці c = a – b за означенням випливає правильність співвідношення b + c = a. Ставлю різні запитання і завдання, демонструючи на екран відповідні записи і малюнки. Даю само- стійні завдання на знаходження різниці і суми векторів.
Ф ормулюємо разом з учнями означення різниці векторів a(a1;a2), b(b1;b2
B C
a+b
a a-b
А b D
Мал. 24
Р
ізницею векторів a(a1;a2), b(b1;b2 ) називається такий вектор с(с1;c2), який в сумі з вектором b має вектор a : b + c = a. Звідси знаходимо координати вектора c = a – b: c1 = a1 – b1 c2 = a2 – b2.
З а мал. 24 учні знаходимо різницю і суму векторів OA і OB .
Запропоновую учням використати правила додавання і віднімання векторів.
2. Властивості додавання (переставна і сполучна) учні записують в зошиті у вигляді:
a + b = b + a
Розглядаю випадки, коли три точки А, В, С лежать на одній прямій.
3) Сполучну властивість векторів записується у вигляді:
(a + b) + c = a + (b + c) (1)
B b C
a a+b
A (a + b) + c D
a)
b
a b+c c
a + (b + c)
ь)
Мал. 25
На екран демонструю мал. 25 і разом з учнями коментую сполучну власти – вість додавання (1).
4
. Після повторення властивостей додавання демонструю алгоритм побудови різниці двох векторів a і b. Для цього демонструю мал. 24 і алгоритм подови.